2026届安徽省安庆市第十一中学高一下数学期末质量跟踪监视模拟试题含解析_第1页
2026届安徽省安庆市第十一中学高一下数学期末质量跟踪监视模拟试题含解析_第2页
2026届安徽省安庆市第十一中学高一下数学期末质量跟踪监视模拟试题含解析_第3页
2026届安徽省安庆市第十一中学高一下数学期末质量跟踪监视模拟试题含解析_第4页
2026届安徽省安庆市第十一中学高一下数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届安徽省安庆市第十一中学高一下数学期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若不等式对实数恒成立,则实数的取值范围()A.或 B.C. D.2.两条平行直线与间的距离等于()A. B.2 C. D.43.已知随机事件和互斥,且,.则()A. B. C. D.4.设x,y满足约束条件2x-y+2≥0,8x-y-4≤0,x≥0,y≥0,若目标函数z=abx+y(a,A.2 B.4 C.6 D.85.在中,已知三个内角为,,满足,则().A. B.C. D.6.已知的三边满足,则的内角C为()A. B. C. D.7.函数的零点所在的区间是()A. B. C. D.8.设集合,则()A. B. C. D.9.已知某地、、三个村的人口户数及贫困情况分别如图(1)和图(2)所示,为了解该地三个村的贫困原因,当地政府决定采用分层抽样的方法抽取的户数进行调査,则样本容量和抽取村贫困户的户数分别是()A., B.,C., D.,10.已知在中,,且,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若等差数列的前项和,且,则______________.12.等差数列,的前项和分别为,,且,则______.13.某幼儿园对儿童记忆能力的量化评价值和识图能力的量化评价值进行统计分析,得到如下数据:468103568由表中数据,求得回归直线方程中的,则.14.若,则实数的值为_______.15.已知锐角的外接圆的半径为1,,则的面积的取值范围为_____.16.体积为8的一个正方体,其全面积与球的表面积相等,则球的体积等于________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设数列的前项和为,点均在函数的图像上.(Ⅰ)求数列的通项公式;(Ⅱ)设,是数列的前项和,求使得对所有都成立的最小正整数.18.设全集为实数集,,,.(1)若,求实数的取值范围;(2)若,且,求实数的取值范围.19.已知等差数列中,,,数列中,,其前项和满足:.(1)求数列、的通项公式;(2)设,求数列的前项和.20.已知向量,,函数.(1)若,,求的值;(2)若函数在区间上是单调递增函数,求正数的取值范围.21.在中,内角A,B,C的对边分别是ɑ,b,c,已知,.(1)求角C;(2)求面积的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

对m分m≠0和m=0两种情况讨论分析得解.【详解】由题得时,x<0,与已知不符,所以m≠0.当m≠0时,,所以.综合得m的取值范围为.故选C【点睛】本题主要考查一元二次不等式的恒成立问题,意在考查学生对该知识的理解掌握水平和分析推理能力.2、C【解析】

先把直线方程中未知数的系数化为相同的,再利用两条平行直线间的距离公式,求得结果.【详解】解:两条平行直线与间,即两条平行直线与,故它们之间的距离为,故选:.【点睛】本题主要考查两条平行直线间的距离公式应用,注意未知数的系数必需相同,属于基础题.3、D【解析】

根据互斥事件的概率公式可求得,利用对立事件概率公式求得结果.【详解】与互斥本题正确选项:【点睛】本题考查概率中的互斥事件、对立事件概率公式的应用,属于基础题.4、B【解析】

画出不等式组对应的平面区域,平移动直线至1,4时z有最大值8,再利用基本不等式可求a+b的最小值.【详解】原不等式组表示的平面区域如图中阴影部分所示,当直线z=abx+y(a,b>0)过直线2x-y+2=0与直线8x-y-4=0的交点1,4时,目标函数z=abx+y(a,即ab=4,所以a+b≥2ab=4,当且仅当a=b=2时,等号成立.所以【点睛】二元一次不等式组的条件下的二元函数的最值问题,常通过线性规划来求最值,求最值时往往要考二元函数的几何意义,比如3x+4y表示动直线3x+4y-z=0的横截距的三倍,而y+2x-1则表示动点Px,y与5、C【解析】

利用正弦定理、余弦定理即可得出.【详解】由正弦定理,以及,得,不妨取,则,又,.故选:C.【点睛】本题主要考查了正弦定理,余弦定理在解三角形中应用,考查了转化思想,属于基础题.6、C【解析】原式可化为,又,则C=,故选C.7、B【解析】

根据零点存在性定理即可求解.【详解】由函数,则,,故函数的零点在区间上.故选:B【点睛】本题考查了利用零点存在性定理判断零点所在的区间,需熟记定理内容,属于基础题.8、B【解析】

补集:【详解】因为,所以,选B.【点睛】本题主要考查了集合的运算,需要掌握交集、并集、补集的运算。属于基础题。9、B【解析】

将饼图中的、、三个村的人口户数全部相加,再将所得结果乘以得出样本容量,在村人口户数乘以,再乘以可得出村贫困户的抽取的户数.【详解】由图得样本容量为,抽取贫困户的户数为户,则抽取村贫困户的户数为户.故选B.【点睛】本题考查样本容量的求法,考查分层抽样、扇形统计图和条形统计图计算数据,考查运算求解能力,属于基础题.10、C【解析】

先确定D位置,根据向量的三角形法则,将用,表示出来得到答案.【详解】故答案选C【点睛】本题考查了向量的加减,没有注意向量方向是容易犯的错误.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

设等差数列的公差为,根据题意建立和的方程组,解出这两个量,即可求出的值.【详解】设等差数列的公差为,由题意得,解得,因此,.故答案为:.【点睛】本题考查等差数列中项的计算,解题的关键就是要建立首项和公差的方程组,利用这两个基本量来求解,考查运算求解能力,属于基础题.12、【解析】

取,代入计算得到答案.【详解】,当时故答案为【点睛】本题考查了前项和和通项的关系,取是解题的关键.13、-0.1【解析】

分别求出和的均值,代入线性回归方程即可.【详解】由表中数据易得,,由在直线方程上,可得【点睛】此题考查线性回归方程形式,表示在回归直线上代入即可,属于简单题目.14、【解析】

由得,代入方程即可求解.【详解】,.,,,即,故填.【点睛】本题主要考查了反三角函数的定义及运算性质,属于中档题.15、【解析】

由已知利用正弦定理可以得到b=2sinB,c=2sin(﹣B),利用三角形面积公式,三角函数恒等变换的应用可求S△ABC═sin(2B﹣)+,由锐角三角形求B的范围,进而利用正弦函数的图象和性质即可得解.【详解】解:∵锐角△ABC的外接圆的半径为1,A=,∴由正弦定理可得:,可得:b=2sinB,c=2sin(﹣B),∴S△ABC=bcsinA=×2sinB×2sin(﹣B)×=sinB(cosB+sinB)=sin(2B﹣)+,∵B,C为锐角,可得:<B<,<2B﹣<,可得:sin(2B﹣)∈(,1],∴S△ABC=sin(2B﹣)+∈(1,].故答案为:(1,].【点睛】本题主要考查了正弦定理,三角形面积公式,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了计算能力和转化思想,属于中档题.16、【解析】

由体积为的一个正方体,棱长为,全面积为,则,,球的体积为,故答案为.考点:正方体与球的表面积及体积的算法.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)10【解析】

解:(I)依题意得,即.当n≥2时,;当所以.(II)由(I)得,故=.因此,使得<成立的m必须满足,故满足要求的最小正整数m为10.18、(1);(2)【解析】

(1)根据空集的概念与不等式的解集的概念求解;(2)求出,再由子集概念列式求解.【详解】解:(1)由得,(2)由已知得,由(1)可知则解得,由(1)可得时,,从而得【点睛】本题考查空集的概念,集合的交集运算,以及集合的包含关系,属于基础题.19、(1)(2)【解析】试题分析:(1)对于求得首项和公差即可求得数列的通项公式,对于,利用递推关系求解数列的通项公式即可;(2)利用数列的特点错位相减求解数列的前n项和即可.试题解析:(I)①②①-②得,为等比数列,(II)由两式相减,得点睛:一般地,如果数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{bn}的公比,然后作差求解.20、(1);(2)【解析】

(1)利用数量积公式结合二倍角公式,辅助角公式化简函数解析式,由,结合的范围以及平方关系得出的值,由结合两角差的余弦公式求解即可;(2)由整体法结合正弦函数的单调性得出该函数的单调增区间,则区间应该包含在的一个增区间内,根据包含关系列出不等式组,求解即可得出正数的取值范围.【详解】(1)因为,所以,即.因为,所以所以.所以.(2).令,得,因为函数在区间上是单调递增函数所以存在,使得所以有,即因为,所以又因为,所以,则,所以从而有,所以,所以.【点睛】本题主要考查了利用同角三角函数的基本关系,二倍角公式,两角差的余弦公式化简求值以及根据正弦型函数的单调性求参数范围,属于较难题.21、(1);(2)【解析】

(1)利用正弦定理边化角可求得,由的范

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论