版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省鹤壁市淇县第一中学2026届高一数学第二学期期末学业水平测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.等比数列中,,,则公比等于()A.2 B.3 C. D.2.△ABC的内角A,B,C的对边分别为a,b,c,已知asinA-bsinB=4csinC,cosA=-,则=A.6 B.5 C.4 D.33.两直角边分别为1,的直角三角形绕其斜边所在的直线旋转一周,得到的几何体的表面积是()A. B.3π C. D.4.已知函数在处取得极小值,则的最小值为()A.4 B.5 C.9 D.105.已知实数满足,那么的最小值为(
)A. B. C. D.6.在中,a、b分别为内角A、B的对边,如果,,,则()A. B. C. D.7.要得到函数的图像,只需要将函数的图像()A.向右平移个长度单位 B.向左平移个长度单位C.向右平移个长度单位 D.向左平移个长度单位8.如图2所示,程序框图的输出结果是()A.3 B.4 C.5 D.89.为了了解某次数学竞赛中1000名学生的成绩,从中抽取一个容量为100的样本,则每名学生成绩入样的机会是()A. B. C. D.10.在ΔABC中,已知BC=2AC,B∈[πA.[π4C.[π4二、填空题:本大题共6小题,每小题5分,共30分。11.在《九章算术·商功》中将四个面均为直角三角形的三棱锥称为鳖臑(biēnào),在如下图所示的鳖臑中,,,,则的直角顶点为______.12.已知向量,,且,则______.13.函数f(x)=coscos的最小正周期为________.14.已知等差数列,的前项和分别为,,若,则______.15.已知圆是圆上的一条动直径,点是直线上的动点,则的最小值是____.16.已知数列满足:,,则_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,.(1)计算及、;(2)设,,,若,试求此时和满足的函数关系式,并求的最小值.18.已知数列前项和为,,且满足().(Ⅰ)求数列的通项公式;(Ⅱ)若,设数列前项和为,求证:.19.关于的不等式,其中为大于0的常数。(1)若不等式的解集为,求实数的取值范围;(2)若不等式的解集为,且中恰好含有三个整数,求实数的取值范围.20.如图,在三棱柱中,侧棱垂直于底面,,分别是的中点.(1)求证:平面;(2)求三棱锥的体积.21.已知数列的前n项和为(),且满足,().(1)求证是等差数列;(2)求数列的通项公式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由题意利用等比数列的通项公式,求出公比的值.【详解】解:等比数列中,,,,则公比,故选:.【点睛】本题主要考查等比数列的通项公式的应用,属于基础题.2、A【解析】
利用余弦定理推论得出a,b,c关系,在结合正弦定理边角互换列出方程,解出结果.【详解】详解:由已知及正弦定理可得,由余弦定理推论可得,故选A.【点睛】本题考查正弦定理及余弦定理推论的应用.3、A【解析】
由题知该旋转体为两个倒立的圆锥底对底组合在一起,根据圆锥的侧面积计算公式可得.【详解】由题得直角三角形的斜边为2,则斜边上的高为.由题知该几何体为两个倒立的圆锥底对底组合在一起,其中,故选.【点睛】本题考查旋转体的定义,圆锥的表面积的计算,属于基础题.4、C【解析】由,得,则,所以,所以,当且仅当,即时,等号成立,故选C.5、A【解析】
表示直线上的点到原点的距离,利用点到直线的距离公式求得最小值.【详解】依题意可知表示直线上的点到原点的距离,故原点到直线的距离为最小值,即最小值为,故选A.【点睛】本小题主要考查点到直线的距离公式,考查化归与转化的数学思想方法,属于基础题.6、A【解析】
先求出再利用正弦定理求解即可.【详解】,,,由正弦定理可得,解得,故选:A.【点睛】本题注意考查正弦定理的应用,属于中档题.正弦定理主要有三种应用:求边和角、边角互化、外接圆半径.7、D【解析】
根据的图像变换规律求解即可【详解】设平移量为,则由,满足:,故由向左平移个长度单位可得到故选:D【点睛】本题考查函数的图像变换规律,属于基础题8、B【解析】
由框图可知,①,满足条件,则;②,满足条件,则;③,满足条件,则;④,不满足条件,输出;故选B9、A【解析】
因为随机抽样是等可能抽样,每名学生成绩被抽到的机会相等,都是.故选A.10、D【解析】
由BC=2AC,根据正弦定理可得:sinA=2sinB,由角【详解】由于在ΔABC中,有BC=2AC,根据正弦定理可得由于B∈[π6,π4]由于在三角形中,A∈0,π,由正弦函数的图像可得:A∈[故答案选D【点睛】本题考查正弦定理在三角形中的应用,以及三角函数图像的应用,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据,可得平面,进而可得,再由,证明平面,即可得出,是的直角顶点.【详解】在三棱锥中,,,且,∴平面,又平面,∴,又∵,且,∴平面,又平面,∴,∴的直角顶点为.故答案为:.【点睛】本题考查了直线与直线以及直线与平面垂直的应用问题,属于基础题.12、【解析】
根据的坐标表示,即可得出,解出即可.【详解】,,.【点睛】本题主要考查平行向量的坐标关系应用.13、2【解析】f(x)=coscos=cos·sin=sinπx,最小正周期为T==214、【解析】
利用等差数列的性质以及等差数列奇数项之和与中间项的关系进行化简求解.【详解】因为是等差数列,所以,又因为为等差数列,所以,故.【点睛】(1)在等差数列中,若,则有;(2)在等差数列.15、【解析】
由题意得,==﹣=,即可求的最小值.【详解】圆,得,则圆心C(1,2),半径R=,如图可得:==﹣=,点是直线上,所以=()2=,∴的最小值是=.故答案为:.【点睛】本题考查了向量的数量积、转化和数形结合的思想,点到直线的距离,属于中档题.16、【解析】
从开始,直接代入公式计算,可得的值.【详解】解:由题意得:,,,,故答案为:.【点睛】本题主要考查数列的递推公式及数列的性质,相对简单.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,;(2),.【解析】
(1)根据数量积和模的坐标运算计算;(2)由可得出,然后由二次函数性质求得最小值.【详解】(1)由题意及,同理,.(2)∵,∴,∴,即,又,∴时,.【点睛】本题考查向量的数量积与模的坐标运算,考查向量垂直与数量积的关系.掌握数量积的性质是解题基础.其中.18、(Ⅰ)(Ⅱ)详见解析【解析】【试题分析】(1)借助递推关系式,运用等比数列的定义分析求解;(2)依据题设条件运用列项相消求和法进行求解:(Ⅰ),由(),得(),两式相减得.由,得,又,所以是以为首项,3为公比的等比数列,故.(Ⅱ),,.19、(1);(2)【解析】
(1)关于的不等式的解集为,得出判别式△,且,由此求出的取值范围;(2)由题意知判别式△,设,利用对称轴以及(1),,得出不等式的解集中恰好有三个整数,等价于,由此求出的取值范围.【详解】(1)由题意得一元二次不等式对应方程的判别式,结合,解得.(2)由题意得一元二次不等式对应方程的判别式,解得.又,所以.设,其对称轴为.注意到,,对称轴,所以不等式解集中恰好有三个整数只能是1、2、3,此时中恰好含有三个整数等价于:,解得.【点睛】本题考查了不等式的解法与应用问题.20、(1)证明见解析(2)【解析】试题分析:(1)做辅助线,先证及四边形为平行四边形平面;(2)利用勾股定理求得.试题解析:(1)证明:取中点,连接,则∵是的中点,∴;∵是的中点,∴,∴四边形为平行四边形,∴,∵平面,平面,∴平面;(2)∵,∴,∴21、(1)证明见解析;(2).【解析】
(1)当时,由代入,化简得出,由此可证明出数列是等差数列;(2)求出数列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农资零售财务制度
- 完善财务制度严格
- 会议管理制度的审批流程
- 造粒厂安全生产制度范本
- 拆装轮胎的安全制度
- 校园洗手管理制度
- 协会内部控制报销制度
- 软件公司出差制度
- 单位消防相关制度
- 医务人员的三查7对制度
- IPCJEDECJSTD020F 非气密性表面贴装器件(SMDs)的湿气回流敏感性分类
- DZ/T 0270-2014地下水监测井建设规范
- 安全标准化系统实施考评表
- 医院总值班培训课件
- 杭州萧山拆迁协议书
- 2025年天津河东区高三一模高考英语试卷试题(含答案)
- 湖南长沙九年级物理第一学期期末考试试卷(含答案)
- 电子商务供应链管理课件
- 标准波导和法兰尺寸
- 绘本:我喜欢书
- 2023健康住宅建设技术规程
评论
0/150
提交评论