云南省昭通市大关县民族中学2026届高一下数学期末质量检测模拟试题含解析_第1页
云南省昭通市大关县民族中学2026届高一下数学期末质量检测模拟试题含解析_第2页
云南省昭通市大关县民族中学2026届高一下数学期末质量检测模拟试题含解析_第3页
云南省昭通市大关县民族中学2026届高一下数学期末质量检测模拟试题含解析_第4页
云南省昭通市大关县民族中学2026届高一下数学期末质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省昭通市大关县民族中学2026届高一下数学期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.关于x的不等式ax-b>0的解集是,则关于x的不等式SKIPIF1<0≤0的解集是()A.(-∞,-1]∪[2,+∞)B.[-1,2]C.[1,2]D.(,1]∪[2,)2.将函数的图象向左平移个单位得到函数的图象,则的值为()A. B. C. D.3.在中,若为等边三角形(两点在两侧),则当四边形的面积最大时,()A. B. C. D.4.已知内角,,所对的边分别为,,且满足,则=()A. B. C. D.5.在一段时间内,某种商品的价格(元)和销售量(件)之间的一组数据如下表:价格(元)4681012销售量(件)358910若与呈线性相关关系,且解得回归直线的斜率,则的值为()A.0.2 B.-0.7 C.-0.2 D.0.76.从集合中随机抽取一个数,从集合中随机抽取一个数,则向量与向量垂直的概率为()A. B. C. D.7.某学校高一、高二、高三年级的学生人数分别为、、人,该校为了了解本校学生视力情况,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为的样本,则应从高三年级抽取的学生人数为()A. B. C. D.8.已知函数,当时,取得最小值,则等于()A.9 B.7 C.5 D.39.为等差数列的前项和,且,.记,其中表示不超过的最大整数,如,.数列的前项和为()A. B. C. D.10.如图,正方体ABCD﹣A1B1C1D1的棱长为3,线段B1D1上有两个动点E,F且EF=1,则当E,F移动时,下列结论中错误的是()A.AE∥平面C1BDB.四面体ACEF的体积不为定值C.三棱锥A﹣BEF的体积为定值D.四面体ACDF的体积为定值二、填空题:本大题共6小题,每小题5分,共30分。11.把一枚质地均匀的硬币先后抛掷两次,两次都是正面向上的概率为________.12.已知一个三角形的三边长分别为3,5,7,则该三角形的最大内角为_________13.某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为_________.14.数列定义为,则_______.15._________________;16.已知数列的通项公式为,的前项和为,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.手机支付也称为移动支付,是指允许移动用户使用其移动终端(通常是手机)对所消费的商品或服务进行账务支付的一种服务方式.继卡类支付、网络支付后,手机支付俨然成为新宠.某金融机构为了了解移动支付在大众中的熟知度,对15-65岁的人群随机抽样调查,调查的问题是“你会使用移动支付吗?”其中,回答“会”的共有100个人,把这100个人按照年龄分成5组,然后绘制成如图所示的频率分布表和频率分布直方图.组数第l组第2组第3组第4组第5组分组频数203630104(1)求;(2)从第l,3,4组中用分层抽样的方法抽取6人,求第l,3,4组抽取的人数:(3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.18.在中,内角、、的对边分别为、、,且.(1)求角的大小;(2)若,求的最大值及相应的角的余弦值.19.某超市为了解端午节期间粽子的销售量,对其所在销售范围内的1000名消费者在端午节期间的粽子购买量(单位:g)进行了问卷调查,得到如图所示的频率分布直方图.(Ⅰ)求频率分布直方图中a的值;(Ⅱ)求这1000名消费者的棕子购买量在600g~1400g的人数;(Ⅲ)求这1000名消费者的人均粽子购买量(频率分布直方图中同一组的数据用该组区间的中点值作代表).20.已知数列,.(1)记,证明:是等比数列;(2)当是奇数时,证明:;(3)证明:.21.已知,函数(其中),且图象在轴右侧的第一个最高点的横坐标为,并过点.(1)求函数的解析式;(2)求函数的单调增区间.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】试题分析:因为关于x的不等式ax-b>0的解集是,所以,从而SKIPIF1<0≤0可化为SKIPIF1<0,解得,关于x的不等式SKIPIF1<0≤0的解集是(-∞,-1]∪[2,+∞),选A。考点:本题主要考查一元一次不等式、一元二次不等式的解法。点评:简单题,从已知出发,首先确定a,b的关系,并进一步确定一元二次不等式的解集。2、A【解析】,向左平移个单位得到函数=,故3、A【解析】

求出三角形的面积,求出四边形的面积,运用三角函数的恒等变换和正弦函数的值域,求出满足条件的角的值即可.【详解】设,,,是正三角形,,由余弦定理得:,,时,四边形的面积最大,此时.故选A.【点睛】本题考查余弦定理和三角形的面积公式,考查两角的和差公式和正弦函数的值域,考查化简运算能力,属于中档题.4、A【解析】

利用正弦定理以及和与差的正弦公式可得答案;【详解】∵0<A<π,∴sinA≠0由atanA=bcosC+ccosB,根据正弦定理:可得sinA•tanA=sinBcosC+sinCcosB=sin(B+C)=sinA∴•tanA=1;∴tanA,那么A;故选A.【点睛】本题考查三角形的正弦定理,,内角和定理以及和与差正弦公式的运用,考查运算能力,属于基础题.5、C【解析】

由题意利用线性回归方程的性质计算可得的值.【详解】由于,,由于线性回归方程过样本中心点,故:,据此可得:.故选C.【点睛】本题主要考查线性回归方程的性质及其应用,属于中等题.6、B【解析】

通过向量垂直的条件即可判断基本事件的个数,从而求得概率.【详解】基本事件总数为,当时,,满足的基本事件有,,,共3个,故所求概率为,故选B.【点睛】本题主要考查古典概型,计算满足条件的基本事件个数是解题的关键,意在考查学生的分析能力.7、C【解析】

设从高三年级抽取的学生人数为,根据总体中和样本中高三年级所占的比例相等列等式求出的值.【详解】设从高三年级抽取的学生人数为,由题意可得,解得,因此,应从高三年级抽取的学生人数为,故选:C.【点睛】本题考查分层抽样中的相关计算,解题时要利用总体中每层的抽样比例相等或者总体或样本中每层的所占的比相等来列等式求解,考查运算求解能力,属于基础题.8、B【解析】

先对函数进行配凑,使得能够使用均值不等式,再利用均值不等式,求得结果.【详解】因为故当且仅当,即时,取得最小值.故,则.故选:B.【点睛】本题考查均值不等式的使用,属基础题;需要注意均值不等式使用的条件.9、D【解析】

利用等差数列的通项公式与求和公式可得,再利用,可得,,.即可得出.【详解】解:为等差数列的前项和,且,,.可得,则公差.,,则,,,.数列的前项和为:.故选:.【点睛】本题考查了等差数列的通项公式与求和公式、对数运算性质、取整函数,考查了推理能力与计算能力,属于中档题.10、B【解析】

根据面面平行的性质定理,判断A选项是否正确,根据锥体体积计算公式,判断BCD选项是否正确.【详解】对于A选项,易得平面与平面平行,所以平面成立,A选项结论正确.对于B选项,由于长度一定,所以三角形面积为定值.到平面的距离,也即到平面的距离一定,所以四面体体积为定值,故B选项结论错误.对于C选项,由于长度一定,所以三角形面积为定值.到平面的距离,也即到平面的距离一定,所以三棱锥体积为定值,故C选项结论正确.对于D选项,由于三角形面积为定值,到平面的距离为定值,所以四面体的体积为定值.综上所述,错误的结论为B选项.故选:B【点睛】本小题主要考查利用面面平行证明线面平行,考查三棱锥(四面体)体积的计算,考查空间想象能力和逻辑推理能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

把一枚质地均匀的硬币先后抛掷两次,利用列举法求出基本事件有4个,由此能求出两次都是正面向上的概率.【详解】把一枚质地均匀的硬币先后抛掷两次,基本事件有4个,分别为:正正,正反,反正,反反,两次都是正面向上的概率为.故答案为:.【点睛】本题考查古典概型的概率计算,求解时注意列举法的应用,即列举出所有等可能结果.12、【解析】

由题意可得三角形的最大内角即边7对的角,设为θ,由余弦定理可得cosθ的值,即可求得θ的值.【详解】根据三角形中,大边对大角,故边长分别为3,5,7的三角形的最大内角即边7对的角,设为θ,则由余弦定理可得cosθ,∴θ=,故答案为:C.【点睛】本题主要考查余弦定理的应用,大边对大角,已知三角函数值求角的大小,属于基础题.13、0.5【解析】

由互斥事件的概率加法求出射手在一次射击中超过8环的概率,再利用对立事件的概率求出不超过8环的概率即可.【详解】由题意,射中10环、9环、8环的概率分别为0.2、0.3、0.1,所以射手的一次射击中超过8环的概率为:0.2+0.3=0.5故射手的一次射击中不超过8环的概率为:1-0.5=0.5故答案为0.5【点睛】本题主要考查了对立事件的概率,属于基础题.14、【解析】

由已知得两式,相减可发现原数列的奇数项和偶数项均为等差数列,分类讨论分别算出奇数项的和和偶数项的和,再相加得原数列前的和【详解】两式相减得数列的奇数项,偶数项分别成等差数列,,,,数列的前2n项中所有奇数项的和为:,数列的前2n项中所有偶数项的和为:【点睛】对于递推式为,其特点是隔项相减为常数,这种数列要分类讨论,分偶数项和奇数项来研究,特别注意偶数项的首项为,而奇数项的首项为.15、1【解析】

利用诱导公式化简即可得出答案【详解】【点睛】本题考查诱导公式,属于基础题.16、【解析】

计算出,再由可得出的值.【详解】当时,则,当时,则,当时,.,,因此,.故答案为:.【点睛】本题考查数列求和,解题的关键就是找出数列的规律,考查分析问题和解决问题的能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)第1组2人,第3组3人,第4组1人;(3)【解析】

(1)直接计算.(2)根据分层抽样的规律按照比例抽取.(3)设第1组抽取的2人为,,第3组抽取的3人为,,,第4组抽取的1人为,排列出所有可能,再计算满足条件的个数,相除得到答案.【详解】解:(1)由题意可知,,(2)第1,3,4组共有60人,所以抽取的比例是则从第1组抽取的人数为,从第3组抽取的人数为,从第4组抽取的人数为;(3)设第1组抽取的2人为,,第3组抽取的3人为,,,第4组抽取的1人为,则从这6人中随机抽取2人有如下种情形:,,,,,,,,,,,,,,共有15个基本事件.其中符合“抽取的2人来自同一个组”的基本事件有,,,共4个基本事件,所以抽取的2人来自同一个组的概率.【点睛】本题考查了频率直方图,分层抽样,概率的计算,意在考查学生解决问题的能力.18、(1)(2)的最大值为,此时【解析】

(1)由正弦定理边角互化思想结合内角和定理、诱导公式可得出的值,结合角的取值范围可得出角的大小;(2)由正弦定理得出,,然后利用三角恒等变换思想将转化为关于角的三角函数,可得出的值,并求出的值.【详解】(1)由正弦定理得,即,从而有,即,由得,因为,所以;(2)由正弦定理可知,,则有,,,其中,因为,所以,所以当时,取得最大值,此时,所以,的最大值为,此时.【点睛】本题考查正弦定理边角互化思想的应用,考查内角和定理、诱导公式,以及三角形中最值的求解,求解时常利用正弦定理将边转化为角的三角函数来求解,解题时要充分利用三角恒等变换思想将三角函数解析式化简,考查运算求解能力,属于中等题.19、(Ⅰ)a=0.1(Ⅱ)2(Ⅲ)1208g【解析】

(Ⅰ)由频率分布直方图的性质,列出方程,即可求解得值;(Ⅱ)先求出粽子购买量在的频率,由此能求出这1000名消费者的粽子购买量在的人数;(Ⅲ)由频率分布直方图能求出1000名消费者的人均购买粽子购买量【详解】(Ⅰ)由频率分布直方图的性质,可得(0.0002+0.00055+a+0.0005+0.00025)×400=1,解得a=0.1.(Ⅱ)∵粽子购买量在600g~1400g的频率为:(0.00055+0.1)×400=0.62,∴这1000名消费者的棕子购买量在600g~1400g的人数为:0.62×1000=2.(Ⅲ)由频率分布

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论