2026届江苏省南京市玄武区溧水高中高一下数学期末联考模拟试题含解析_第1页
2026届江苏省南京市玄武区溧水高中高一下数学期末联考模拟试题含解析_第2页
2026届江苏省南京市玄武区溧水高中高一下数学期末联考模拟试题含解析_第3页
2026届江苏省南京市玄武区溧水高中高一下数学期末联考模拟试题含解析_第4页
2026届江苏省南京市玄武区溧水高中高一下数学期末联考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届江苏省南京市玄武区溧水高中高一下数学期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若点在圆外,则a的取值范围是()A. B. C. D.或2.下列极限为1的是()A.(个9) B.C. D.3.在中,,.若点满足,则()A. B. C. D.4.已知平面四边形满足,,,则的长为()A.2 B. C. D.5.要得到函数的图象,只需将函数的图象()A.向左平移个单位 B.向左平移个单位C.向右平移个单位 D.向右平移个单位6.已知函数,若存在实数,满足,则实数的取值范围为(

)A. B.C. D.7.某中学高一年级甲班有7名学生,乙班有8名学生参加数学竞赛,他们取得的成绩的茎叶图如图所示,其中甲班学生的平均分是85,乙班学生成绩的中位数是82,若从成绩在的学生中随机抽取两名学生,则两名学生的成绩都高于82分的概率为()A. B. C. D.8.若直线与直线关于点对称,则直线恒过点()A. B. C. D.9.函数的最小正周期是A. B. C. D.10.为了了解运动员对志愿者服务质量的意见,打算从1200名运动员中抽取一个容量为40的样本,考虑用系统抽样,则分段间隔为A.40 B.20 C.30 D.12二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量、满足,,且,则与的夹角为________.12.已知不等式x2-x-a>0的解集为x|x>3或13.当时,不等式成立,则实数k的取值范围是______________.14.数列的前项和为,,,则________.15.水平放置的的斜二测直观图如图所示,已知,,则边上的中线的实际长度为______.16.在中,已知,则下列四个不等式中,正确的不等式的序号为____________①②③④三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为、高为的等腰三角形,侧视图是一个底边长为、高为的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S.18.如图所示,在平行四边形ABCD中,若,,.(1)若,求的值;(2)若,求的值.19.已知函数(1)若,求函数的零点;(2)若在恒成立,求的取值范围;(3)设函数,解不等式.20.已知函数当时,求函数的最小值.21.定理:若函数的图象关于直线对称,且方程有个根,则这个根之和为.利用上述定理,求解下列问题:(1)已知函数,,设函数的图象关于直线对称,求的值及方程的所有根之和;(2)若关于的方程在实数集上有唯一的解,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

先由表示圆可得,然后将点代入不等式即可解得答案【详解】由表示圆可得,即因为点在圆外所以,即综上:a的取值范围是故选:C【点睛】点与圆的位置关系(1)在圆外(2)在圆上(3)在圆内2、A【解析】

利用极限的运算逐项求解判断即可【详解】对于A项,极限为1,对于B项,极限不存在,对于C项,极限为1.对于D项,,故选:A.【点睛】本题考查的极限的运算及性质,准确计算是关键,是基础题3、A【解析】

试题分析:,故选A.4、B【解析】

先建系,再结合两点的距离公式、向量的数量积及模的运算,求解即可得解.【详解】解:建立如图所示的平面直角坐标系,则,设,由,则,所以,又,所以,,即,故选:B.【点睛】本题考查了两点的距离公式,重点考查了向量的数量积运算及模的运算,属中档题.5、C【解析】

考查三角函数图象平移,记得将变量前面系数提取.【详解】,所以只需将向右平移个单位.所以选择C【点睛】易错题,一定要将提出,否则容易错选D.6、A【解析】

根据题意可知方程有解即可,代入解析式化简后,利用基本不等式得出,再利用分类讨论思想即可求出实数的取值范围.【详解】由题意知,方程有解,则,化简得,即,因为,所以,当时,化简得,解得;当时,化简得,解得,综上所述的取值范围为.故答案为:A【点睛】本题主要考查了函数的基本性质的应用,以及利用基本不等式求最值的应用,其中解答中利用题设条件化简,合理利用基本不等式求解是解答的关键,着重考查了推理与运算能力,属于中档试题.7、D【解析】

计算得到,,再计算概率得到答案.【详解】,解得;,解得;故.故选:.【点睛】本题考查了平均值,中位数,概率的计算,意在考查学生的应用能力.8、C【解析】

利用直线过定点可求所过的定点.【详解】直线过定点,它关于点的对称点为,因为关于点对称,故直线恒过点,故选C.【点睛】一般地,若直线和直线相交,那么动直线必过定点(该定点为的交点).9、D【解析】

的最小正周期为,求解得到结果.【详解】由解析式可知,最小正周期本题正确选项:【点睛】本题考查的性质,属于基础题.10、C【解析】

根据系统抽样的定义和方法,结合题意可分段的间隔等于个体总数除以样本容量,即可求解.【详解】根据系统抽样的定义和方法,结合题意可分段的间隔,故选C.【点睛】本题主要考查了系统抽样的定义和方法,其中解答中熟记系统抽样的定义和方法是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

直接应用数量积的运算,求出与的夹角.【详解】设向量、的夹角为;∵,∴,∵,∴.故答案为:.【点睛】本题考查向量的夹角计算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,属于基础题.12、6【解析】

由题意可知-2,3为方程x2【详解】由题意可知-2,3为方程x2-x-a=0的两根,则-2×3=-a,即故答案为:6【点睛】本题主要考查一元二次不等式的解,意在考查学生对该知识的理解掌握水平,属于基础题.13、k∈(﹣∞,1]【解析】

此题先把常数k分离出来,再构造成再利用导数求函数的最小值,使其最小值大于等于k即可.【详解】由题意知:∵当0≤x≤1时(1)当x=0时,不等式恒成立k∈R(2)当0<x≤1时,不等式可化为要使不等式恒成立,则k成立令f(x)x∈(0,1]即f'(x)再令g(x)g'(x)∵当0<x≤1时,g'(x)<0∴g(x)为单调递减函数∴g(x)<g(0)=0∴f'(x)<0即函数f(x)为单调递减函数所以f(x)min=f(1)=1即k≤1综上所述,由(1)(2)得k≤1故答案为:k∈(﹣∞,1].【点睛】本题主要考查利用导数求函数的最值,属于中档题型.14、18【解析】

利用,化简得到数列是首项为,公比为的等比数列,利用,即可求解.【详解】,即所以数列是首项为,公比为的等比数列即所以故答案为:【点睛】本题主要考查了与的关系以及等比数列的通项公式,属于基础题.15、【解析】

利用斜二测直观图的画图规则,可得为一个直角三角形,且,得,从而得到边上的中线的实际长度为.【详解】利用斜二测直观图的画图规则,平行于轴或在轴上的线段,长度保持不变;平行于轴或在轴上的线段,长度减半,利用逆向原则,所以为一个直角三角形,且,所以,所以边上的中线的实际长度为.【点睛】本题考查斜二测画法的规则,考查基本识图、作图能力.16、②③【解析】

根据,分当和两种情况分类讨论,每一类中利用正、余弦函数的单调性判断,特别注意,当时,.【详解】当时,在上是增函数,因为,所以,因为在上是减函数,且,所以,当时,且,因为在上是减函数,所以,而,所以.故答案为:②③【点睛】本题主要考查了正弦函数与余弦函数的单调性在三角形中的应用,还考查了运算求解的能力,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)1;(2)40+24【解析】

由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h1的等腰三角形,左、右侧面均为底边长为6、高为h2的等腰三角形,分析出图形之后,再利用公式求解即可.【详解】解:由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h1的等腰三角形,左、右侧面均为底边长为6、高为h2的等腰三角形,如图所示.(1)几何体的体积为V•S矩形•h6×8×4=1.(2)正侧面及相对侧面底边上的高为:h12.左、右侧面的底边上的高为:h24.故几何体的侧面面积为:S=2×(8×26×4)=40+24.18、(1);(2)22【解析】

(1)易得,,再由即可得解;(2)由可得出,再由,可得:,即,即可得到的值.【详解】(1)由向量的加法法则得:,,,因为,所以;(2),∴,∴,即,∴.【点睛】本题平面向量的应用,考查向量的加法法则,考查向量数量积的应用,考查逻辑思维能力和运算能力,属于常考题.19、(1)1;(2)(3)见解析【解析】

(1)解方程可得零点;(2)恒成立,可分离参数得,这样只要求得在上的最大值即可;(3)注意到的定义域,不等式等价于,这样可根据与0,1的大小关系分类讨论.【详解】(1)当时,令得,,∵,∴函数的零点是1(2)在恒成立,即在恒成立,分离参数得:,∵,∴从而有:.(3)令,得,,因为函数的定义域为,所以等价于(1)当,即时,恒成立,原不等式的解集是(2)当,即时,原不等式的解集是(3)当,即时,原不等式的解集是(4)当,即时,原不等式的解集是综上所述:当时,原不等式的解集是当时,原不等式的解集是当时,原不等式的解集是当时,原不等式的解集是【点睛】本题考查函数的零点,考查不等式恒成立问题,考查解含参数的一元二次不等式.其中不等式恒成立问题可采用参数法转化为求函数的最值问题,而解一元二次不等式,必须对参数分类讨论,解题关键是确定分类标准.解一元二次不等式的分类标准有三个方面:一是二次的系数正负或者为0问题,二是一元二次方程的判别式的正负或0的问题,三是一元二次方程两根的大小关系.20、当时,,当时,,当时,.【解析】

将函数的解析式化成二次函数的形式,然后把作为整体,并根据的取值范围,结合求二次函数在闭区间上的最值的方法进行求解即可.【详解】由题意得.∵,∴.当,即时,则当,即时,函数取得最小值,且;当,即时,则当,即时,函数取得最小值,且;当,即时,则当,函数取得最小值,且.综上可得.【点睛】解答本题的关键是将问题转化为二次函数的问题求解,求二次函数在闭区间上的最值时要结合抛物线的开口方向

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论