版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省泉州市马甲中学2026届数学高一下期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,位于处的海面观测站获悉,在其正东方向相距40海里的处有一艘渔船遇险,并在原地等待营救.在处南偏西且相距20海里的处有一救援船,其速度为海里小时,则该船到求助处的时间为()分钟.A.24 B.36 C.48 D.602.如图,在矩形中,,,点为的中点,点在边上,点在边上,且,则的最大值是()A. B. C. D.3.若向量,的夹角为60°,且||=2,||=3,则|2|=()A.2 B.14 C.2 D.84.某几何体的三视图如图所示,其外接球体积为()A. B. C. D.5.如图,在圆内随机撒一把豆子,统计落在其内接正方形中的豆子数目,若豆子总数为n,落在正方形内的豆子数为m,则圆周率π的估算值是()A.nmB.2nmC.3n6.若不等式的解集是,则的值为()A.12 B. C. D.107.若,且,则下列不等式中正确的是()A. B. C. D.8.在正六边形ABCDEF中,点P为CE上的任意一点,若,则()A.2 B. C.3 D.不确定9.若直线与直线互相平行,则的值为()A.4 B. C.5 D.10.平行四边形中,M为的中点,若.则=()A. B.2 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.中,,,,则______.12.根据党中央关于“精准脱贫”的要求,石嘴山市农业经济部门派3位专家对大武口、惠农2个区进行调研,每个区至少派1位专家,则甲,乙两位专家派遣至惠农区的概率为_____.13.异面直线,所成角为,过空间一点的直线与直线,所成角均为,若这样的直线有且只有两条,则的取值范围为___________________.14.将函数的图象上每一点的横坐标缩短为原来的一半,纵坐标不变;再向右平移个单位长度得到的图象,则_________.15.如图甲是第七届国际数学教育大会(简称)的会徽图案,会徽的主体图案是由如图乙的一连串直角三角形演化而成的,其中,如果把图乙中的直角三角形继续作下去,记的长度构成数列,则此数列的通项公式为_____.16.若,则函数的最小值是_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆,过点的直线与圆相交于不同的两点,.(1)若,求直线的方程.(2)判断是否为定值.若是,求出这个定值;若不是,请说明理由.18.计算:(1)(2)(3)19.已知函数,且,.(1)求该函数的最小正周期及对称中心坐标;(2)若方程的根为,且,求的值.20.如图,在平面四边形ABCD中,,,,.(1)若点E为边CD上的动点,求的最小值;(2)若,,,求的值.21.的内角的对边分别为,已知.(1)求;(2)若为锐角三角形,且,求面积的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
利用余弦定理求出的长度,然后根据速度、时间、路程之间的关系求出时间即可.【详解】由题意可知:,运用余弦定理可知:该船到求助处的时间,故本题选A.【点睛】本题考查了余弦定理的应用,考查了数学运算能力.2、A【解析】
把线段最值问题转化为函数问题,建立函数表达式,从而求得最值.【详解】设,,,,,,,,,,的最大值是.故选A.【点睛】本题主要考查函数的实际应用,建立合适的函数关系式是解决此题的关键,意在考查学生的分析能力及数学建模能力.3、A【解析】
由已知可得||,根据数量积公式求解即可.【详解】||.故选A.【点睛】本题考查平面向量数量积的性质及运算,考查了利用数量积进行向量模的运算求解方法,属于基础题.4、D【解析】
易得该几何体为三棱锥,再根据三视图在长方体中画出该三棱锥,再根据此三棱锥与长方体的外接球相同求解即可.【详解】在长方体中画出该几何体,易得为三棱锥,且三棱锥与该长方体外接球相同.又长方体体对角线等于外接球直径,故.故外接球体积故选:D【点睛】本题主要考查了三视图还原几何体以及求外接球体积的问题,属于基础题.5、B【解析】试题分析:设正方形的边长为2.则圆的半径为2,根据几何概型的概率公式可以得到mn=4考点:几何概型.【方法点睛】本题題主要考查“体积型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与体积有关的几何概型问题关鍵是计算问题题的总体积(总空间)以及事件的体积(事件空间);几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.6、B【解析】
将不等式解集转化为对应方程的根,然后根据韦达定理求出方程中的参数,从而求出所求.【详解】解:不等式的解集为,为方程的两个根,根据韦达定理:解得,故选:B。【点睛】本题主要考查了一元二次不等式的应用,以及韦达定理的运用和一元二次不等式解集与所对应一元二次方程根的关系,属于中档题.7、D【解析】
利用不等式的性质依次对选项进行判断。【详解】对于A,当,且异号时,,故A不正确;对于B,当,且都为负数时,,故B不正确;对于C,取,则,故不正确;对于D,由于,,则,所以,即,故D正确;故答案选D【点睛】本题主要考查不等式的基本性质,在解决此类选择题时,可以用特殊值法,依次对选项进行排除。8、C【解析】
延长交于点,延长交于点,可推出,,所以有,然后利用平面向量共线的推论即可求出【详解】如图,延长交于点,延长交于点设正六边形ABCDEF的边长为则在中有,,所以,所以有,同理可得因为所以因为三点共线,所以有,即故选:C【点睛】遇到三点共线时,要联想到平面向量共线的推论:三点共线,若,则.9、C【解析】
根据两条存在斜率的直线平行,斜率相等且在纵轴上的截距不相等这一性质,可以求出的值.【详解】直线的斜率为,在纵轴的截距为,因此若直线与直线互相平行,则一定有直线的斜率为,在纵轴的截距不等于,于是有且,解得,故本题选C.【点睛】本题考查了已知两直线平行求参数问题.其时本题也可以运用下列性质解题:若直线与直线平行,则有且.10、A【解析】
先求出,再根据得到解方程组即得解.【详解】由题意得,又因为,所以,由题意得,所以解得所以,故选A.【点睛】本题主要考查平面向量的运算法则,意在考查学生对这些知识的理解掌握水平,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据,得到的值,再由余弦定理,得到的值.【详解】因为,所以,在中,,,由余弦定理得.所以.故答案为:【点睛】本题考查二倍角的余弦公式,余弦定理解三角形,属于简单题.12、【解析】
将所有的基本事件全部列举出来,确定基本事件的总数,并确定所求事件所包含的基本事件数,然后利用古典概型的概率公式求出答案.【详解】所有的基本事件有:(甲、乙丙)、(乙,甲丙)、(丙、甲乙)、(甲乙、丙)、(甲丙、乙)、(乙丙、甲)(其中前面的表示派往大武口区调研的专家),共个,因此,所求的事件的概率为,故答案为.【点睛】本题考查古典概型概率的计算,解决这类问题的关键在于确定基本事件的数目,一般利用枚举法和数状图法来列举,遵循不重不漏的基本原则,考查计算能力,属于基础题.13、【解析】
将直线,平移到交于点,设平移后的直线为,,如图,过作及其外角的角平分线,根据题意可以求出的取值范围.【详解】将直线,平移到交于点,设平移后的直线为,,如图,过作及其外角的角平分线,异面直线,所成角为,可知,所以,所以在方向,要使有两条,则有:,在方向,要使不存在,则有,综上所述,.故答案为:【点睛】本题考查了异面直线的所成角的有关性质,考查了空间想象能力.14、【解析】
由条件根据函数的图象变换规律,,可得的解析式,从而求得的值.【详解】将函数向左平移个单位长度可得的图象;保持纵坐标不变,横坐标伸长为原来的倍可得的图象,故,所以.【点睛】本题主要考查函数)的图象变换规律,属于中档题.15、【解析】
由图可知,由勾股定理可得,利用等差数列的通项公式求解即可.【详解】根据图形,因为都是直角三角形,,是以1为首项,以1为公差的等差数列,,,故答案为.【点睛】本题主要考查归纳推理的应用,等差数列的定义与通项公式,以及数形结合思想的应用,意在考查综合应用所学知识解答问题的能力,属于与中档题.16、【解析】
利用基本不等式可求得函数的最小值.【详解】,由基本不等式得,当且仅当时,等号成立,因此,当时,函数的最小值是.故答案为:.【点睛】本题考查利用基本不等式求函数的最值,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或.(2)是,定值.【解析】
(1)根据题意设出,再联立直线方程和圆的方程,得到,,然后由列式,再将的值代入求解,即可求出;(2)先根据特殊情况,当直线与轴垂直时,求出,再说明当直线与轴不垂直时,是否成立,即可判断.【详解】(1)由已知得不与轴垂直,不妨设,,.联立消去得,则有,又,,,解得或.所以,直线的方程为或.(2)当直线与轴垂直时(斜率不存在),,的坐标分别为,,此时.当不与轴垂直时,又由(1),,且,所以.综上,为定值.【点睛】本题主要考查直线与圆的位置关系的应用,韦达定理的应用,数量积的坐标表示,以及和圆有关的定值问题的解法的应用,意在考查学生的数学运算能力,属于中档题.18、(1);(2);(3).【解析】
利用诱导公式,对每一道题目进行化简求值.【详解】(1)原式.(2)原式.(3)原式.【点睛】在使用诱导公式时,注意“奇变偶不变,符号看象限”法则的应用,即辅助角为的奇数倍,函数名要改变;若为的偶数倍,函数名不改变.19、(1)最小正周期为.对称中心坐标为;(2)-1【解析】
(1)由题意两未知数列两方程即可求出、的值,再进行三角变换,可得的解析式,再利用正弦函数的周期公式、图象的对称性,即可得出结论.(2)先由条件求得的值,可得的值.【详解】(1)由,得:,解得:,,,即函数的最小正周期为.由得:函数的对称中心坐标为;(2)由题意得:,即,或,则或,由知:,.【点睛】本题主要考查三角恒等变换,正弦函数的周期性、图象的对称性,以及三角函数求值.20、(1);(2)【解析】
(1)建立平面直角坐标系,将范围问题转化为函数的最值问题,进而求解函数的最值即可;(2)根据、两点的位置,可以写出对应的坐标,从而在直角三角形中求得的正余弦,进而用余弦的和角公式进行求解.【详解】(1)设AC,BD相交于O,由于,所以,所以,因此,以DB所在的直线为x轴,以AC所在的直线为y轴建立平面直角坐标系如下图所示:故,,,.因为直线CD的方程为,所以可设.所以,.所以,当时,最小为.(2)因为,,所以,.因此,,.所以,.所以,.【点睛】本题考查利用向量解决几何问题,涉及范围问题的求解,属经典好题.21、(1);(2).【解析】
(1)利用正弦定理化简题中等式,得到关于B的三角方程,最后根据A,B,C均为三角形内角解得.(2)根据三角形面积
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届湖北省黄冈市数学高一下期末学业质量监测试题含解析
- 2026年经济学原理与实务试题库
- 2026年法学研究生入学考试法学理论与法律实务题解详解
- 2026年机械工程师基础理论知识考试题集
- 2026年国际经济师考试国际市场调研与预测方法论及案例题集
- 2026年营销策略与市场分析能力测验
- 2026年注册建筑师REA建筑设计与规范应用题库
- 2026年一级建造师考试专业实务题集
- 2026年虚拟现实教育应用场景测试题
- 2026年人文社会知识积累与应用题目集
- 寒假蓄力一模冲刺+课件-2025-2026学年高三上学期寒假规划班会课
- 2026马年开学第一课:策马扬鞭启新程
- 国保秘密力量工作课件
- 影视分镜师合同范本
- 2025年高考(广西卷)生物试题(学生版+解析版)
- 肿瘤患者凝血功能异常日间手术凝血管理方案
- 胰腺炎华西中医治疗
- 液压计算(37excel自动计算表格)
- 医疗器械唯一标识(UDI)管理制度
- 中国音乐学院乐理级试题及答案
- GB/T 2521.2-2025全工艺冷轧电工钢第2部分:晶粒取向钢带(片)
评论
0/150
提交评论