2026届四川省仁寿县青神中学校高一数学第二学期期末综合测试试题含解析_第1页
2026届四川省仁寿县青神中学校高一数学第二学期期末综合测试试题含解析_第2页
2026届四川省仁寿县青神中学校高一数学第二学期期末综合测试试题含解析_第3页
2026届四川省仁寿县青神中学校高一数学第二学期期末综合测试试题含解析_第4页
2026届四川省仁寿县青神中学校高一数学第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届四川省仁寿县青神中学校高一数学第二学期期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.正方体中,异面直线与BC所成角的大小为()A. B. C. D.2.一个盒子内装有大小相同的红球、白球和黑球若干个,从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或红球的概率是()A.0.3 B.0.55 C.0.7 D.0.753.的内角的对边分别为,面积为,若,则外接圆的半径为()A. B. C. D.4.下列函数中,最小值为2的函数是()A. B.C. D.5.已知向量,若,则的最小值为().A.12 B. C.16 D.6.将函数的图象向右平移个的单位长度,再将所得到的函数图象上所有点的横坐标伸长为原来的倍(纵坐标不变),则所得到的图象的函数解析式为()A. B.C. D.7.“数列为等比数列”是“数列为等比数列”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.非充分非必要条件8.在计算机BASIC语言中,函数表示整数a被整数b除所得的余数,如.用下面的程序框图,如果输入的,,那么输出的结果是()A.7 B.21 C.35 D.499.要得到函数的图象,只需将函数的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度10.为比较甲、乙两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定.其中所有正确结论的编号为:()A.①③ B.①④ C.②③ D.②④二、填空题:本大题共6小题,每小题5分,共30分。11.若的面积,则=12.在平面直角坐标系中,定义两点之间的直角距离为:现有以下命题:①若是轴上的两点,则;②已知,则为定值;③原点与直线上任意一点之间的直角距离的最小值为;④若表示两点间的距离,那么.其中真命题是__________(写出所有真命题的序号).13.已知函数,,则的最大值是__________.14.设a>1,b>1.若关于x,y的方程组无解,则的取值范围是.15.某产品分为优质品、合格品、次品三个等级,生产中出现合格品的概率为0.25,出现次品的概率为0.03,在该产品中任抽一件,则抽到优质品的概率为__________.16.已知,若直线与直线垂直,则的最小值为_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知公差不为0的等差数列{an}满足a3=9,a(1)求{a(2)设数列{bn}满足bn=1n(18.已知数列的前项和为,且满足(1)求数列的通项公式;(2)设,令,求19.已知(1)求的值;(2)求的值.20.已知的顶点,AB边上的中线CM所在直线方程为,AC边上的高BH所在直线方程为.(1)求C点坐标;(2)求直线BC的方程.21.如图,已知平面是正三角形,.(1)求证:平面平面;(2)求二面角的正切值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

利用异面直线与BC所成角的的定义,平移直线,即可得答案.【详解】在正方体中,易得.异面直线与垂直,即所成的角为.故选:D.【点睛】本题考查异面直线所成角的定义,考查对基本概念的理解,属于基础题.2、D【解析】

由题意可知摸出黑球的概率,再根据摸出黑球,摸出红球为互斥事件,根据互斥事件的和即可求解.【详解】因为从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,所以摸出黑球的概率是,因为从盒子中摸出1个球为黑球或红球为互斥事件,所以摸出黑球或红球的概率,故选D.【点睛】本题主要考查了两个互斥事件的和事件,其概率公式,属于中档题.3、A【解析】

出现面积,可转化为观察,和余弦定理很相似,但是有差别,差别就是条件是形式,而余弦定理中是形式,但是我们可以注意到:,所以可以完成本题.【详解】由,所以在三角形中,再由正弦定理所以答案选择A.【点睛】本题很灵活,在常数4的处理问题上有点巧妙,然后再借助余弦定理及正弦定理,难度较大.4、C【解析】

利用基本不等式及函数的单调性即可判断.【详解】解:对于.时,,故错误.对于.,可得,,当且仅当,即时取等号,故最小值不可能为1,故错误.对于,可得,,当且仅当时取等号,最小值为1.对于.,函数在上单调递增,在上单调递减,,故不对;故选:.【点睛】本题考查基本不等式,难点在于应用基本不等式时对“一正二定三等”条件的理解与灵活应用,属于中档题.5、B【解析】

根据向量的平行关系,得到间的等量关系,再根据“”的妙用结合基本不等式即可求解出的最小值.【详解】因为,所以,所以,又因为,取等号时即,所以.故选:B.【点睛】本题考查利用基本不等式求解最小值,难度一般.本题是基本不等式中的常见类型问题:已知,则,取等号时.6、A【解析】

由题意利用函数的图象变换法则,即可得出结论。【详解】将函数的图象向右平移个的单位长度,可得的图象,再将所得到的函数图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则所得到的图象的函数解析式为,故选.【点睛】本题主要考查函数的图象变换法则,注意对的影响。7、A【解析】

数列是等比数列与命题是等比数列是否能互推,然后根据必要条件、充分条件和充要条件的定义进行判断.【详解】若数列是等比数列,则,∴,∴数列是等比数列,若数列是等比数列,则,∴,∴数列不是等比数列,∴数列是等比数列是数列是等比数列的充分非必要条件,故选:A.【点睛】本题主要考查充分不必要条件的判断,注意等比数列的性质的灵活运用,属于基础题.8、B【解析】

模拟执行循环体,即可得到输出值.【详解】,,,,继续执行得,,继续执行得,,结束循环,输出.故选:B.【点睛】本题考查循环体的执行,属程序框图基础题.9、C【解析】

由,则只需将函数的图象向左平移个单位长度.【详解】解:因为,所以要得到函数的图象,只需将函数的图象向左平移个单位长度.故选:C.【点睛】本题考查了三角函数图像的平移变换,属基础题.10、C【解析】

根据中位数,平均数,方差的概念计算比较可得.【详解】甲的中位数为29,乙的中位数为30,故①不正确;甲的平均数为29,乙的平均数为30,故②正确;从比分来看,乙的高分集中度比甲的高分集中度高,故③正确,④不正确.故选C.【点睛】本题考查了茎叶图,属基础题.平均数即为几个数加到一起除以数据的个数得到的结果.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:,.考点:三角形的面积公式及余弦定理的变形.点评:由三角形的面积公式,再根据,直接可求出tanC的值,从而得到C.12、①②④【解析】

根据新定义的直角距离,结合具体选项,进行逐一分析即可.【详解】对①:因为是轴上的两点,故,则,①正确;对②:根据定义因为,故,②正确;对③:根据定义,当且仅当时,取得最小值,故③错误;对④:因为,由不等式,即可得,故④正确.综上正确的有①②④故答案为:①②④.【点睛】本题考查新定义问题,涉及同角三角函数关系,绝对值三角不等式,属综合题.13、3【解析】函数在上为减函数,故最大值为.14、【解析】试题分析:方程组无解等价于直线与直线平行,所以且.又,为正数,所以(),即取值范围是.考点:方程组的思想以及基本不等式的应用.15、0.72【解析】

根据对立事件的概率公式即可求解.【详解】由题意,在该产品中任抽一件,“抽到优质品”与“抽到合格品或次品”是对立事件,所以在该产品中任抽一件,则抽到优质品的概率为.故答案为【点睛】本题主要考查对立事件的概率公式,熟记对立事件的概念及概率计算公式即可求解,属于基础题型.16、8【解析】

两直线斜率存在且互相垂直,由斜率乘积为-1求得等式,把目标式子化成,运用基本不等式求得最小值.【详解】设直线的斜率为,,直线的斜率为,,两条直线垂直,,整理得:,,等号成立当且仅当,的最小值为.【点睛】利用“1”的代换,转化成可用基本不等式求最值,考查转化与化归的思想.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)an=4n-3【解析】

(1)根据条件列方程组,求出首项和公差即可得出通项公式;(2)利用裂项相消法求和.【详解】(1)设等差数列an的公差为d(d≠0)a1解得d=4或d=0(舍去),a1∴a(2)∵b∴S=1【点睛】本题考查了等差数列的通项公式,考查了利用裂项相消进行数列求和的方法,属于基础题.18、(1)(2)【解析】

试题分析:(1)利用得到相邻两项的关系,把问题转化为等比数列问题;(2)利用裂项相消法求和.试题解析:(1)由,得得∴是等比数列,且公比为(2)由(1)及得,19、(1)20,(2)【解析】

(1)先利用同角三角函数的基本关系求得cos和tan的值,进而利用二倍角公式把sin2展开,把sin和cos的值代入即可.(2)先利用诱导公式使=tan(﹣),再利用正切的两角和公式展开后,把tanα的值代入即可求得答案.【详解】(1)由,得,所以=(2)∵,∴【点睛】本题主要考查了三角函数的化简求值的问题.要求学生能灵活运用三角函数的基本公式.20、(1);(2)【解析】

(1)根据点斜式求出AC边所在的直线方程,再由CM所在直线方程,两方程联立即可求解.(2)设,根据题意可得,,两式联立解得的值,再根据两点式即可得到直线BC的方程.【详解】(1)AC边上的高BH所在直线方程为,且,AC边所在的直线方程为,由AB边上的中线CM所在直线方程为,,解得,故C点坐标为.(2)设,则由AC边上的高BH所在直线方程为,可得,AB边上的中线CM所在直线方程为,,,解得,故点的坐标为,则直线BC的方程为,即.【点睛】本题考查了点斜式方程、两点式方程,同时考查了解二元一次方程组,属于基础题.21、(1)证明见解析;(2).【解析】

(1)取的中点的中点,证明,由根据线面垂直判定定理可得,可得平面,结合面面垂直的判定定理,可得平面平面;

(2)过作,连接BM,可以得到为二面角的平面角,解三角形即可求出二面角的正切值.【详解】解:(1)取BE的中点F.

AE的中点G,连接GD,CF∴,GF∥AB又∵,CD∥AB∴CD∥GF,CD=GF,∴CFGD是平行四边形,∴C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论