版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省临沂市平邑县、沂水县2026届数学高一下期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线与,若,则()A.2 B.1 C.2或-1 D.-2或12.△中,已知,,,如果△有两组解,则的取值范围()A. B. C. D.3.已知直线m,n,平面α,β,给出下列命题:①若m⊥α,n⊥β,且m⊥n,则α⊥β②若m∥α,n∥β,且m∥n,则α∥β③若m∥α,n∥β,且α∥β,且m∥n④若m⊥α,n⊥β,且α⊥β,则m⊥n其中正确的命题是()A.②③ B.①③ C.①④ D.③④4.某产品的广告费用(单位:万元)与销售额(单位:万元)的统计数据如下表:根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售为()A.63.6万元 B.65.5万元C.67.7万元 D.72.0万元5.设a,b,c为的内角所对的边,若,且,那么外接圆的半径为A.1 B. C.2 D.46.若将函数的图象向左平移个单位长度,平移后的图象关于点对称,则函数在上的最小值是A. B. C. D.7.如图是一圆锥的三视图,正视图和侧视图都是顶角为120°的等腰三角形,若过该圆锥顶点S的截面三角形面积的最大值为2,则该圆锥的侧面积为A. B. C. D.48.下图是500名学生某次数学测试成绩(单位:分)的频率分布直方图,则这500名学生中测试成绩在区间[90,100)中的学生人数是A.60 B.55 C.45 D.509.执行如图的程序框图,则输出的λ是()A.-2 B.-4 C.0 D.-2或010.若平面向量a与b的夹角为60°,|b|=4,(aA.2B.4C.6D.12二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列前项和,则该数列的通项公式______.12.如果奇函数f(x)在[3,7]上是增函数且最小值是5,那么f(x)在[-7,-3]上是_________.①减函数且最小值是-5;②减函数且最大值是-5;③增函数且最小值是-5;④增函数且最大值是-513.若角的终边经过点,则______.14.若数据的平均数为,则____________.15.函数的图像可由函数的图像至少向右平移________个单位长度得到.16.已知无穷等比数列满足:对任意的,,则数列公比的取值集合为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,它的部分图象如图所示.(1)求函数的解析式;(2)当时,求函数的值域.18.在中,角、、所对的边分别为、、,且满足.(1)求角;(2)若,,求的周长.19.扇形AOB中心角为,所在圆半径为,它按如图(Ⅰ)(Ⅱ)两种方式有内接矩形CDEF.(1)矩形CDEF的顶点C、D在扇形的半径OB上,顶点E在圆弧AB上,顶点F在半径OA上,设;(2)点M是圆弧AB的中点,矩形CDEF的顶点D、E在圆弧AB上,且关于直线OM对称,顶点C、F分别在半径OB、OA上,设;试研究(1)(2)两种方式下矩形面积的最大值,并说明两种方式下哪一种矩形面积最大?20.已知等差数列满足,的前项和为.(1)求及;(2)记,求21.设.(1)当时,解关于的不等式;(2)若关于的不等式的解集为,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由两直线平行的等价条件,即可得到本题答案.【详解】因为,所以,解得或.故选:C【点睛】本题主要考查利用两直线平行的等价条件求值.2、D【解析】由正弦定理得A+C=180°-60°=120°,
由题意得:A有两个值,且这两个值之和为180°,
∴利用正弦函数的图象可得:60°<A<120°,
若A=90,这样补角也是90°,一解,不合题意,<sinA<1,
∵x=sinA,则2<x<故选D3、C【解析】
根据线线、线面和面面有关定理,对选项逐一分析,由此得出正确选项.【详解】对于①,两个平面的垂线垂直,那么这两个平面垂直.所以①正确.对于②,与可能相交,此时并且与两个平面的交线平行.所以②错误.对于③,直线可能为异面直线,所以③错误.对于④,两个平面垂直,那么这两个平面的垂线垂直.所以④正确.综上所述,正确命题的序号为①④.故选:C【点睛】本小题主要考查空间线线、线面和面面有关命题真假性的判断,属于基础题.4、B【解析】
试题分析:,回归直线必过点,即.将其代入可得解得,所以回归方程为.当时,所以预报广告费用为6万元时销售额为65.5万元考点:回归方程5、A【解析】
由得b2+c2-a2=bc.利用余弦定理,可得A=.再利用正弦定理可得2R=,可得R.【详解】∵,∴,整理得b2+c2-a2=bc,根据余弦定理cosA=,可得cosA=∵A∈(0,π),∴A=由正弦定理可得2R==,解得R=1,故选A【点睛】已知三边关系,可转化为接近余弦定理的形式,直接运用余弦定理理解三角形,注意整体代入思想.6、C【解析】
由题意得,故得平移后的解析式为,根据所的图象关于点对称可求得,从而可得,进而可得所求最小值.【详解】由题意得,将函数的图象向左平移个单位长度所得图象对应的解析式为,因为平移后的图象关于点对称,所以,故,又,所以.所以,由得,所以当或,即或时,函数取得最小值,且最小值为.故选C.【点睛】本题考查三角函数的性质的综合应用,解题的关键是求出参数的值,容易出现的错误是函数图象平移时弄错平移的方向和平移量,此时需要注意在水平方向上的平移或伸缩只是对变量而言的.7、B【解析】
过该圆锥顶点S的截面三角形面积最大是直角三角形,根据面积为2求出圆锥的母线长,再根据正视图求圆锥底面圆的半径,最后根据扇形面积公式求圆锥的侧面积.【详解】过该圆锥顶点S的截面三角形面积最直角三角形,设圆锥的母线长和底面圆的半径分别为,则,即,又,所以圆锥的侧面积;故选B.【点睛】本题考查三视图及圆锥有关计算,此题主要难点在于判断何时截面三角形面积最大,要结合三角形的面积公式,当,即截面是等腰直角三角时面积最大.8、D【解析】分析:根据频率分布直方图可得测试成绩落在中的频率,从而可得结果.详解:由频率分布直方图可得测试成绩落在中的频率为,所以测试成绩落在中的人数为,,故选D.点睛:本题主要考查频率分布直方图的应用,属于中档题.直观图的主要性质有:(1)直方图中各矩形的面积之和为;(2)组距与直方图纵坐标的乘积为该组数据的频率.9、A【解析】
根据框图有,由判断条件即即可求出的值.【详解】由有.根据输出的条件是,即.所以,解得:.故选:A【点睛】本题考查程序框图和向量的加法以及数量积以及性质,属于中档题.10、C【解析】∵(a+2b)·(a-3b)=-72,∴二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由,n≥2时,两式相减,可得{an}的通项公式;【详解】∵Sn=2n2(n∈N*),∴n=1时,a1=S1=2;n≥2时,an=Sn﹣=4n﹣2,a1=2也满足上式,∴an=4n﹣2故答案为【点睛】本题考查数列的递推式,考查数列的通项,属于基础题.12、④【解析】
由题意结合奇函数的对称性和所给函数的性质即可求得最终结果.【详解】奇函数的函数图象关于坐标原点中心对称,则若奇函数f(x)在区间[3,7]上是增函数且最小值为1,那么f(x)在区间[﹣7,﹣3]上是增函数且最大值为﹣1.故答案为:④.【点睛】本题考查了奇函数的性质,函数的对称性及其应用等,重点考查学生对基础概念的理解和计算能力,属于中等题.13、【解析】
利用三角函数的定义可计算出,然后利用诱导公式可计算出结果.【详解】由三角函数的定义可得,由诱导公式可得.故答案为:.【点睛】本题考查利用三角函数的定义和诱导公式求值,考查计算能力,属于基础题.14、【解析】
根据求平均数的公式,得到关于的方程,求得.【详解】由题意得:,解得:,故填:.【点睛】本题考查求一组数据的平均数,考查基本数据处理能力.15、【解析】试题分析:因为,所以函数的的图像可由函数的图像至少向右平移个单位长度得到.【考点】三角函数图像的平移变换、两角差的正弦公式【误区警示】在进行三角函数图像变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母而言,即图像变换要看“变量”变化多少,而不是“角”变化多少.16、【解析】
根据条件先得到:的表示,然后再根据是等比数列讨论公比的情况.【详解】因为,所以,即;取连续的有限项构成数列,不妨令,则,且,则此时必为整数;当时,,不符合;当时,,符合,此时公比;当时,,不符合;当时,,不符合;故:公比.【点睛】本题考查无穷等比数列的公比,难度较难,分析这种抽象类型的数列问题时,经常需要进行分类,可先通过列举的方式找到思路,然后再准确分析.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】试题分析:(1)依题意,则,将点的坐标代入函数的解析式可得,故,函数解析式为.(2)由题意可得,结合三角函数的性质可得函数的值域为.试题解析:(1)依题意,,故.将点的坐标代入函数的解析式可得,则,,故,故函数解析式为.(2)当时,,则,,所以函数的值域为.点睛:求函数f(x)=Asin(ωx+φ)在区间[a,b]上值域的一般步骤:第一步:三角函数式的化简,一般化成形如y=Asin(ωx+φ)+k的形式或y=Acos(ωx+φ)+k的形式.第二步:由x的取值范围确定ωx+φ的取值范围,再确定sin(ωx+φ)(或cos(ωx+φ))的取值范围.第三步:求出所求函数的值域(或最值).18、(1)(2)【解析】
(1)直接利用余弦定理得到答案.(2)根据面积公式得到,利用余弦定理得到,计算得到答案.【详解】解:(1)由得.∴.又∵,∴.(2)∵,∴,则.把代入得即.∴,则.∴的周长为.【点睛】本题考查了余弦定理,面积公式,周长,意在考查学生对于公式的灵活运用.19、方式一最大值【解析】
试题分析:(1)运用公式时要注意审查公式成立的条件,要注意和差、倍角的相对性,要注意升幂、降幂的灵活运用;(2)重视三角函数的三变:三变指变角、变名、变式;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等,适当选择公式进行变形;(3)把形如化为,可进一步研究函数的周期、单调性、最值和对称性.试题解析:解(1)在中,设,则又当即时,(Ⅱ)令与的交点为,的交点为,则,于是,又当即时,取得最大值.,(Ⅰ)(Ⅱ)两种方式下矩形面积的最大值为方式一:考点:把实际问题转化为三角函数求最值问题.20、(1),(2)【解析】
(1)利用等差数列的通项公式,结合,可以得到两个关于首项和公差的二元一次方程,解这个方程组即可求出首项和公差,最后利用等差数列的通项公式和前项和公式求出及;(2)利用裂项相消法可以求出.【详解】解:(1)设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 磁场知识结构
- 短文两篇《陋室铭》《爱莲说》P
- 盗抢骗法律知识
- 2026年语言学习与文化理解外语学习与跨文化交际题库
- 2026年地理地质特征与气候分布题集
- 2026年文化研究民俗文化与传统节庆题库
- 2026年专业导游考试练习题集导游基础知识口语表达能力
- 2026年汽车维修技师考试题库技术实操与理论综合
- 2026年英语专八翻译练习题及参考答案
- 2026年金融分析师考试投资组合理论与实务模拟题
- 2026年1月浙江省高考(首考)英语试题(含答案)+听力音频+听力材料
- 小儿脓毒症教学课件
- 2026年江苏卫生健康职业学院单招职业倾向性测试必刷测试卷及答案解析(名师系列)
- 高校行政人员笔试试题(附答案)
- 2025年《汽车行业质量管理》知识考试题库及答案解析
- 职高生理专业考试题及答案
- 创伤病人的评估和护理
- DB31T 330.2-2013 鼠害与虫害预防与控制技术规范 第2部分:蚊虫防制
- 四年级上册数学脱式计算大全500题及答案
- 2023年华北水利水电工程集团有限公司招聘笔试真题
- 《乌鲁木齐市国土空间总体规划(2021-2035年)》
评论
0/150
提交评论