2026届江苏省南通市如东中学高一下数学期末质量检测试题含解析_第1页
2026届江苏省南通市如东中学高一下数学期末质量检测试题含解析_第2页
2026届江苏省南通市如东中学高一下数学期末质量检测试题含解析_第3页
2026届江苏省南通市如东中学高一下数学期末质量检测试题含解析_第4页
2026届江苏省南通市如东中学高一下数学期末质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届江苏省南通市如东中学高一下数学期末质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知全集,则集合A. B. C. D.2.某学校美术室收藏有6幅国画,分别为人物、山水、花鸟各2幅,现从中随机抽取2幅进行展览,则恰好抽到2幅不同种类的概率为()A. B. C. D.3.直线(,)过点(-1,-1),则的最小值为()A.9 B.1 C.4 D.104.等比数列中,,,则公比等于()A.2 B.3 C. D.5.已知不同的两条直线m,n与不重合的两平面,,下列说法正确的是()A.若,,则B.若,,则C.若,,则D.若,,则6.已知为递增等比数列,则()A. B.5 C.6 D.7.某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一个容量为20的样本,则抽取管理人员()A.3人 B.4人 C.7人 D.12人8.已知,,则()A. B. C. D.9.若tan()=2,则sin2α=()A. B. C. D.10.设是△所在平面内的一点,且,则△与△的面积之比是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知无穷等比数列的首项为,公比为,则其各项的和为__________.12.已知的内角、、的对边分别为、、,若,,且的面积是,___________.13.已知是边长为的等边三角形,为边上(含端点)的动点,则的取值范围是_______.14.已知球的表面积为4,则该球的体积为________.15.在△ABC中,若,则△ABC的形状是____.16.已知等差数列,若,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱锥A﹣BCD中,AB=AD,BD⊥CD,点E、F分别是棱BC、BD的中点.(1)求证:EF∥平面ACD;(2)求证:AE⊥BD.18.在中,已知,是边上的一点,,,.(1)求的大小;(2)求的长.19.在△ABC中,已知BC=7,AB=3,∠A=60°.(1)求cos∠C的值;(2)求△ABC的面积.20.某购物中心举行抽奖活动,顾客从装有编号分别为0,1,2,3四个球的抽奖箱中,每次取出1个球,记下编号后放回,连续取两次(假设取到任何一个小球的可能性相同).若取出的两个小球号码相加之和等于5,则中一等奖;若取出的两个小球号码相加之和等于4,则中二等奖;若取出的两个小球号码相加之和等于3,则中三等奖;其它情况不中奖.(Ⅰ)求顾客中三等奖的概率;(Ⅱ)求顾客未中奖的概率.21.已知,.(1)求的值;(2)若,均为锐角,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

直接利用集合补集的定义求解即可.【详解】因为全集,所以0,2属于全集且不属于集合A,所以集合,故选:C.【点睛】本题主要考查集合补集的定义,属于基础题.2、B【解析】

算出基本事件的总数和随机事件中基本事件的个数,利用古典概型的概率的计算公式可求概率.【详解】设为“恰好抽到2幅不同种类”某学校美术室收藏有6幅国画,分别为人物、山水、花鸟各2幅,现从中随机抽取2幅进行展览,基本事件总数,恰好抽到2幅不同种类包含的基本事件个数,则恰好抽到2幅不同种类的概率为.故选B.【点睛】计算出所有的基本事件的总数及随机事件中含有的基本事件的个数,利用古典概型的概率计算即可.计数时应该利用排列组合的方法.3、A【解析】

将点的坐标代入直线方程:,再利用乘1法求最值【详解】将点的坐标代入直线方程:,,当且仅当时取等号【点睛】已知和为定值,求倒数和的最小值,利用乘1法求最值。4、A【解析】

由题意利用等比数列的通项公式,求出公比的值.【详解】解:等比数列中,,,,则公比,故选:.【点睛】本题主要考查等比数列的通项公式的应用,属于基础题.5、C【解析】

依次判断每个选项的正误得到答案.【详解】若,,则或A错误.若,,则或,B错误若,,则,正确若,,则或,D错误故答案选C【点睛】本题考查了线面关系,找出反例是解题的关键.6、D【解析】

设数列的公比为,根据等比数列的性质,得,又由,求得,进而可求解的值,得到答案.【详解】根据题意,等比数列中,设其公比为,因为,则有,又由,且,解得,所以,所以,故选D.【点睛】本题主要考查了等比数列的通项公式和等比数列的性质的应用,其中解答中熟练应用等比数列的性质,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.7、B【解析】

根据分层抽样原理求出应抽取的管理人数.【详解】根据分层抽样原理知,应抽取管理人员的人数为:故选:B【点睛】本题考查了分层抽样原理应用问题,是基础题.8、C【解析】

利用二倍角公式变形为,然后利用弦化切的思想求出的值,可得出角的值.【详解】,化简得,,则,,因此,,故选C.【点睛】本题考查二倍角公式的应用,考查弦切互化思想的应用,考查给值求角的问题,着重考查学生对三角恒等变换思想的应用能力,属于中等题.9、B【解析】

由两角差的正切得tan,化sin2α为tan的齐次式求解【详解】tan()=2,则则sin2α=故选:B【点睛】本题考查两角差的正切公式,考查二倍角公式及齐次式求值,意在考查公式的灵活运用,是基础题10、B【解析】试题分析:依题意,得,设点到的距离为,所以与的面积之比是,故选B.考点:三角形的面积.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据无穷等比数列求和公式求出等比数列的各项和.【详解】由题意可知,等比数列的各项和为,故答案为:.【点睛】本题考查等比数列各项和的求解,解题的关键就是利用无穷等比数列求和公式进行计算,考查计算能力,属于基础题.12、【解析】

利用同角三角函数计算出的值,利用三角形的面积公式和条件可求出、的值,再利用余弦定理求出的值.【详解】,,,且的面积是,,,,,由余弦定理得,.故答案为.【点睛】本题考查利用余弦定理解三角形,同时也考查了同角三角函数的基本关系、三角形面积公式的应用,考查运算求解能力,属于中等题.13、【解析】

取的中点为坐标原点,、所在直线分别为轴、轴建立平面直角坐标系,设点的坐标为,其中,利用数量积的坐标运算将转化为有关的一次函数的值域问题,可得出的取值范围.【详解】如下图所示:取的中点为坐标原点,、所在直线分别为轴、轴建立平面直角坐标系,则点、、,设点,其中,,,,因此,的取值范围是,故答案为.【点睛】本题考查平面向量数量积的取值范围,可以利用基底向量法以及坐标法求解,在建系时应充分利用对称性来建系,另外就是注意将动点所在的直线变为坐标轴,可简化运算,考查运算求解能力,属于中等题.14、【解析】

先根据球的表面积公式求出半径,再根据体积公式求解.【详解】设球半径为,则,解得,所以【点睛】本题考查球的面积、体积计算,属于基础题.15、钝角三角形【解析】

由,结合正弦定理可得,,由余弦定理可得可判断的取值范围【详解】解:,由正弦定理可得,由余弦定理可得是钝角三角形故答案为钝角三角形.【点睛】本题主要考查了正弦定理、余弦定理的综合应用在三角形的形状判断中的应用,属于基础题16、【解析】

利用等差数列的通项公式直接求解.【详解】设等差数列公差为,由,得,解得.故答案:.【点睛】本题考查等差数列的性质等基础知识,考查运算求解能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)证明见解析【解析】

(1)证明EF∥CD,然后利用直线与平面平行的判断定理证明EF∥平面ACD;(2)证明BD⊥平面AEF,然后说明AE⊥BD.【详解】(1)因为点E、F分别是棱BC、BD的中点,所以EF是△BCD的中位线,所以EF∥CD,又因为EF⊄平面ACD,CD⊂平面ACD,EF∥平面ACD.(2)由(1)得,EF∥CD,又因为BD⊥CD,所以EF⊥BD,因为AB=AD,点F是棱BD的中点,所以AF⊥BD,又因为EF∩AF=F,所以BD⊥平面AEF,又因为AE⊂平面AEF,所以AE⊥BD.【点睛】本题考查直线与平面垂直的性质以及直线与平面平行的判断定理的应用,考查逻辑推理能力与空间想象能力,是基本知识的考查.18、(1);(2).【解析】试题分析:(1)在中,由余弦定理得,最后根据的值及,即可得到的值;(2)在中,由正弦定理得到,从而代入数据进行运算即可得到的长.试题解析:(1)在中,,由余弦定理可得又因为,所以(2)在中,由正弦定理可得所以.考点:1.正弦定理;2.余弦定理;3.解斜三角形.19、(1)(2)【解析】

(1)由已知及正弦定理可得sinC的值,利用大边对大角可求C为锐角,根据同角三角函数基本关系式可求cosC的值.(2)利用三角形内角和定理,两角和的正弦函数公式可求sinB的值,根据三角形的面积公式即可计算得解.【详解】(1)由题意,BC=7,AB=3,∠A=60°.∴由正弦定理可得:sinC=∵BC>AB,∴C为锐角,∴cosC===,(2)因为A+B+C=π,A=60°,∴sinB=sin(A+C)=sinAcosC+cosAsinC=×+=,∴S△ABC=BC•AB•sinB=.【点睛】本题主要考查了正弦定理,大边对大角,同角三角函数基本关系式,三角形内角和定理,两角和的正弦函数公式,三角形的面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.20、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用列举法列出所有可能,设事件为“顾客中三等奖”,的事件.由古典概型概率计算公式即可求解.(Ⅱ)先分别求得中一等奖、二等奖和三等奖的概率,根据对立事件的概率性质即可求得未中奖的概率.【详解】(Ⅰ)所有基本事件包括共16个设事件为“顾客中三等奖”,事件包含基本事件共4个,所以.(Ⅱ)由题意,中一等奖时“两个小球号码相加之和等于5”,这一事件包括基本事件共2个中二等奖时,“两个小球号码相加之和等于4”,这一事件包括基本事件共3个由(Ⅰ)可知中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论