2026届黑龙江省哈尔滨市呼兰一中、阿城二中、宾县三中、尚志五中四校数学高一下期末教学质量检测模拟试题含解析_第1页
2026届黑龙江省哈尔滨市呼兰一中、阿城二中、宾县三中、尚志五中四校数学高一下期末教学质量检测模拟试题含解析_第2页
2026届黑龙江省哈尔滨市呼兰一中、阿城二中、宾县三中、尚志五中四校数学高一下期末教学质量检测模拟试题含解析_第3页
2026届黑龙江省哈尔滨市呼兰一中、阿城二中、宾县三中、尚志五中四校数学高一下期末教学质量检测模拟试题含解析_第4页
2026届黑龙江省哈尔滨市呼兰一中、阿城二中、宾县三中、尚志五中四校数学高一下期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届黑龙江省哈尔滨市呼兰一中、阿城二中、宾县三中、尚志五中四校数学高一下期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一游客在处望见在正北方向有一塔,在北偏西方向的处有一寺庙,此游客骑车向西行后到达处,这时塔和寺庙分别在北偏东和北偏西,则塔与寺庙的距离为()A. B. C. D.2.已知三棱柱()A. B. C. D.3.要得到函数y=cos的图象,只需将函数y=cos2的图象()A.向左平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向右平移个单位长度4.直线的倾斜角为()A. B. C. D.5.如图,在平面四边形ABCD中,若点E为边CD上的动点,则的最小值为()A. B. C. D.6.已知,且,则下列不等式正确的是()A. B. C. D.7.圆的半径是,则的圆心角与圆弧围成的扇形面积是()A. B. C. D.8.已知是等差数列,其中,,则公差()A. B. C. D.9.在区间上任取两个实数,则满足的概率为()A. B. C. D.10.在中,已知,,若点在斜边上,,则的值为().A.6 B.12 C.24 D.48二、填空题:本大题共6小题,每小题5分,共30分。11.若直线的倾斜角为,则______.12.已知为等差数列,为其前项和,若,则,则______.13.______.14.设公比为q(q>0)的等比数列{an}的前n项和为{Sn}.若,,则q=______________.15.某单位共有200名职工参加了50公里徒步活动,其中青年职工与老年职工的人数比为,中年职工有24人,现采取分层抽样的方法抽取50人参加对本次活动满意度的调查,那么应抽取老年职工的人数为________人.16.在中,角、、所对应边分别为、、,,的平分线交于点,且,则的最小值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.学生会有共名同学,其中名男生名女生,现从中随机选出名代表发言.求:同学被选中的概率;至少有名女同学被选中的概率.18.已知.(1)若不等式的解集为,求的值;(2)解不等式.19.已知等比数列的前项和为,,,且.(1)求的通项公式;(2)是否存在正整数,使得成立?若存在,求出的最小值;若不存在,请说明理由.20.已知偶函数.(1)若方程有两不等实根,求的范围;(2)若在上的最小值为2,求的值.21.的内角的对边为,(1)求;(2)若求.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

先根据题干描述,画出ABCD的相对位置,再解三角形.【详解】如图先求出,的长,然后在中利用余弦定理可求解.在中,,可得.在中,,,,∴,∴.在中,,∴.故选C.【点睛】本题考查正余弦定理解决实际问题中的距离问题,正确画出其相对位置是关键,属于中档题.2、C【解析】因为直三棱柱中,AB=3,AC=4,AA1=12,AB⊥AC,所以BC=5,且BC为过底面ABC的截面圆的直径.取BC中点D,则OD⊥底面ABC,则O在侧面BCC1B1内,矩形BCC1B1的对角线长即为球直径,所以2R==13,即R=3、B【解析】∵,∴要得到函数的图像,只需将函数的图像向左平移个单位.选B.4、C【解析】

先根据直线方程得斜率,再求倾斜角.【详解】因为直线,所以直线斜率为,所以倾斜角为,选C.【点睛】本题考查直线斜率以及倾斜角,考查基本分析求解能力,属基本题.5、A【解析】

分析:由题意可得为等腰三角形,为等边三角形,把数量积分拆,设,数量积转化为关于t的函数,用函数可求得最小值。详解:连接BD,取AD中点为O,可知为等腰三角形,而,所以为等边三角形,。设=所以当时,上式取最小值,选A.点睛:本题考查的是平面向量基本定理与向量的拆分,需要选择合适的基底,再把其它向量都用基底表示。同时利用向量共线转化为函数求最值。6、B【解析】

通过反例可排除;根据的单调性可知正确.【详解】当,时,,,则错误;当,时,,则错误;由单调递增可知,当时,,则正确本题正确选项:【点睛】本题考查不等关系的判断,解决此类问题常采用排除法,属于基础题.7、C【解析】

先将化为弧度数,再利用扇形面积计算公式即可得出.【详解】所以扇形的面积为:故选:C【点睛】题考查了扇形面积计算公式,考查了推理能力与计算能力,属于基础题.8、D【解析】

根据等差数列通项公式即可构造方程求得结果.【详解】故选:【点睛】本题考查等差数列基本量的计算,关键是熟练应用等差数列通项公式,属于基础题.9、B【解析】试题分析:因为,在区间上任取两个实数,所以区域的面积为4,其中满足的平面区域面积为,故满足的概率为,选B.考点:本题主要考查几何概型概率计算.点评:简单题,几何概型概率的计算,关键是认清两个“几何度量”.10、C【解析】试题分析:因为,,,所以==+==,故选C.考点:1、平面向量的加减运算;2、平面向量的数量积运算.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

首先利用直线方程求出直线斜率,通过斜率求出倾斜角.【详解】由题知直线方程为,所以直线的斜率,又因为倾斜角,所以倾斜角.故答案为:.【点睛】本题主要考查了直线倾斜角与直线斜率的关系,属于基础题.12、【解析】

利用等差中项的性质求出的值,再利用等差中项的性质求出的值.【详解】由等差中项的性质可得,得,由等差中项的性质得,.故答案为:.【点睛】本题考查等差数列中项的计算,充分利用等差中项的性质进行计算是解题的关键,考查计算能力,属于基础题.13、【解析】

,,故答案为.考点:三角函数诱导公式、切割化弦思想.14、【解析】将,两个式子全部转化成用,q表示的式子.即,两式作差得:,即:,解之得:(舍去)15、4【解析】

直接利用分层抽样的比例关系得到答案.【详解】青年职工与老年职工的人数比为,中年职工有24人,故老年职工为,故应抽取老年职工的人数为.故答案为:.【点睛】本题考查了分层抽样的相关计算,意在考查学生的计算能力.16、18【解析】

根据三角形面积公式找到的关系,结合基本不等式即可求得最小值.【详解】根据题意,,因为的平分线交于点,且,所以而所以,化简得则当且仅当,即,时取等号,即最小值为.故答案为:【点睛】本题考查三角形面积公式和基本不等式,考查计算能力,属于中等题型三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)用列举法列出所有基本事件,得到基本事件的总数和同学被选中的,然后用古典概型概率公式可求得;(2)利用对立事件的概率公式即可求得.【详解】解:选两名代表发言一共有,,共种情况,其中.被选中的情况是共种.所以被选中的概本为.不妨设四位同学为男同学,则没有女同学被选中的情况是:共种,则至少有一名女同学被选中的概率为.【点睛】本题考查了古典概型的概率公式和对立事件的概率公式,属基础题.18、(1);(2)时,解集为,时,解集为,时解集为.【解析】

(1)由一元二次不等式的解集一一元二次方程的解之间的联系求解;(2)按和的大小分类讨论.【详解】(1)由题意的解集为,则方程的解为1和4,∴,解得;(2)不等式为,时,,此时不等式解集为,时,,,当时,,。综上,原不等式的解集:时,解集为,时,解集为,时解集为.【点睛】本题考查解一元二次不等式,掌握三个二次的关系是解题关键,解题时注意对参数分类讨论.19、(1);(2)存在,【解析】

(1)根据条件求解出公比,然后写出等比数列通项;(2)先表示出,然后考虑的的最小值.【详解】(1)因为,所以或,又,则,所以;(2)因为,则,当为偶数时有不符合;所以为奇数,且,,所以且为奇数,故.【点睛】本题考查等比数列通项及其前项和的应用,难度一般.对于公比为负数的等比数列,分析前项和所满足的不等式时,注意分类讨论,因此的奇偶会影响的正负.20、(1);(2)或.【解析】

(1)由偶函数的定义,利用,求得的值,再由对数函数的单调性,结合题设条件,即可求解实数的范围;(2)利用换元法和对勾函数的单调性,以及二次函数的闭区间上的求法,分类讨论对称轴和区间的关系,即可求解.【详解】(1)因为,所以的定义域为,因为是偶函数,即,所以,故,所以,即方程的解为一切实数,所以,因为,且,所以原方程转化为,令,,所以所以在上是减函数,是增函数,当时,使成立的有两个,又由知,与一一对应,故当时,有两不等实根;(2)因为,所以,所以,令,则,令,设,则,因为,所以,即在上是增函数,所以,设,则.(i)当时,的最小值为,所以,解得,或4(舍去);(ii)当时,的最小值为,不合题意;(iii)当时,的最小值为,所以,解得,或(舍去).综上知,或.【点睛】本题主要考查了函数的综合应用,其中解答中涉及到函数的奇偶性,对数函数的图象与性质,以及换元法和分类讨论思想的应用,试题综合性强,属于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论