黑龙江省安达市第七中学2026届高一数学第二学期期末学业水平测试试题含解析_第1页
黑龙江省安达市第七中学2026届高一数学第二学期期末学业水平测试试题含解析_第2页
黑龙江省安达市第七中学2026届高一数学第二学期期末学业水平测试试题含解析_第3页
黑龙江省安达市第七中学2026届高一数学第二学期期末学业水平测试试题含解析_第4页
黑龙江省安达市第七中学2026届高一数学第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省安达市第七中学2026届高一数学第二学期期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.中,则A. B. C. D.2.已知,是两个变量,下列四个散点图中,,虽负相关趋势的是()A. B.C. D.3.设集合,,若,则的取值范围是()A. B. C. D.4.某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一个容量为20的样本,则抽取管理人员()A.3人 B.4人 C.7人 D.12人5.已知全集,则集合A. B. C. D.6.在中,角A,B,C所对的边分别为a,b,c,若,,则的值为()A.4 B. C. D.7.已知直线,,若,则的值为()A.或 B. C. D.8.在数列中,若,,则()A. B. C. D.9.数列满足“对任意正整数,都有”的充要条件是()A.是等差数列 B.与都是等差数列C.是等差数列 D.与都是等差数列且公差相等10.直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的最小值为()A.1 B.2 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知圆C的方程为,一定点为A(1,2),要使过A点作圆的切线有两条,则a的取值范围是____________12.如图,在水平放置的边长为1的正方形中随机撤1000粒豆子,有400粒落到心形阴影部分上,据此估计心形阴影部分的面积为_________.13.已知,若数列满足,,则等于________14.若实数满足,,则__________.15.在四面体中,平面ABC,,若四面体ABCD的外接球的表面积为,则四面体ABCD的体积为_______.16.已知数列{}满足,若数列{}单调递增,数列{}单调递减,数列{}的通项公式为____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在正方体,中,,,,,分别是棱,,,,的中点.(1)求证:平面平面;(2)求平面将正方体分成的两部分体积之比.18.某商场有奖销售中,购满100元商品得1张奖券,多购多得,100张奖券为一个开奖单位,每个开奖单位设特等奖1个,一等奖10个,二等奖50个,设一张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,可知其概率平分别为.(1)求1张奖券中奖的概率;(2)求1张奖券不中特等奖且不中一等奖的概率.19.在数列中,,,且满足,.(1)求数列的通项公式;(2)设,,求数列的前项和.20.(已知函数.(I)求函数的最小正周期及在区间上的最大值和最小值;(II)若,求的值.21.已知函数,,值域为,求常数、的值;

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:由余弦定理,故选择B考点:余弦定理2、C【解析】由图可知C选项中的散点图描述了随着的增加而减小的变化趋势,故选C3、A【解析】因为,,且,即,所以.故选A.4、B【解析】

根据分层抽样原理求出应抽取的管理人数.【详解】根据分层抽样原理知,应抽取管理人员的人数为:故选:B【点睛】本题考查了分层抽样原理应用问题,是基础题.5、C【解析】

直接利用集合补集的定义求解即可.【详解】因为全集,所以0,2属于全集且不属于集合A,所以集合,故选:C.【点睛】本题主要考查集合补集的定义,属于基础题.6、B【解析】

由正弦定理可得,,代入即可求解.【详解】∵,,∴由正弦定理可得,,则.故选:B.【点睛】本题考查正弦定理的简单应用,考查函数与方程思想,考查运算求解能力,属于基础题.7、B【解析】

由两直线平行的等价条件列等式求出实数的值.【详解】,则,整理得,解得,故选:B.【点睛】本题考查利用两直线平行求参数的值,解题时要利用直线平行的等价条件列等式求解,一般是转化为斜率相等来求解,考查运算求解能力,属于基础题.8、C【解析】

利用倒数法构造等差数列,求解通项公式后即可求解某一项的值.【详解】∵,∴,即,数列是首项为,公差为2的等差数列,∴,即,∴.故选C.【点睛】对于形如,可将其转化为的等差数列形式,然后根据等差数列去计算.9、D【解析】

将变形为和,根据等差数列的定义即可得出与都是等差数列且公差相等,反过来,利用等差数列的定义得到,变形即可得出,从而得到“”的充要条件是“与都是等差数列且公差相等”.【详解】由得:即数列与均为等差数列且公差相等,故“”是“与都是等差数列且公差相等”的充分条件反之,与都是等差数列且公差相等必有成立变形得:故“与都是等差数列且公差相等”是“”的必要条件综上,“”的充要条件是“与都是等差数列且公差相等”故选:D.【点睛】本题主要考查了等差数列的判断,考查了充分必要条件的判断,属于中等题.10、B【解析】

求得圆心到直线的距离,减去圆的半径,求得△ABP面积的最小时,三角形的高,由此求得△ABP面积的最小值.【详解】依题意设,故.圆的圆心为,半径为,所以圆上的点到直线的距离的最小值为(其中为圆心到直线的距离),所以△ABP面积的最小值为.故选:B【点睛】本小题主要考查圆上的点到直线的距离的最小值的求法,考查三角形面积的最值的求法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

使过A点作圆的切线有两条,定点在圆外,代入圆方程计算得到答案.【详解】已知圆C的方程为,要使过A点作圆的切线有两条即点A(1,2)在圆C外:恒成立.综上所述:故答案为:【点睛】本题考查了点和圆的位置关系,通过切线数量判断位置关系是解题的关键.12、0.4【解析】

根据几何概型的计算,反求阴影部分的面积即可.【详解】设阴影部分的面积为,根据几何概型的概率计算公式:,解得.故答案为:.【点睛】本题考查几何概型的概率计算公式,属基础题.13、【解析】

根据首项、递推公式,结合函数的解析式,求出的值,可以发现数列是周期数列,求出周期,利用数列的周期性可以求出的值.【详解】,所以数列是以5为周期的数列,因为20能被5整除,所以.【点睛】本题考查了数列的周期性,考查了数学运算能力.14、【解析】

由反正弦函数的定义求解.【详解】∵,∴,,∴,∴.故答案为:.【点睛】本题考查反正弦函数,解题时注意反正弦函数的取值范围是,结合诱导公式求解.15、【解析】

设,再根据外接球的直径与和底面外接圆的一条直径构成直角三角形求解进而求得体积即可.【详解】设,底面外接圆直径为.易得底面是边长为3的等边三角形.则由正弦定理得.又外接球的直径与和底面外接圆的一条直径构成直角三角形有.又外接球的表面积为,即.解得.故四面体体积为.故答案为:【点睛】本题主要考查了侧棱垂直于底面的四面体的外接球问题.需要根据题意建立底面三角形外接圆的直径和三棱锥的高与外接球直径的关系再求解.属于中档题.16、【解析】

分别求出{}、{}的通项公式,再统一形式即可得解。【详解】解:根据题意,又单调递减,{}单调递减增…①…②①+②,得,故代入,有成立,又…③…④③+④,得,故代入,成立。,综上,【点睛】本题考查了等比数列性质的灵活运用,考查了分类思想和运算能力,属于难题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】

(1)先证明平面,再证明平面平面;(2)连接,,则截面右侧的几何体为四棱锥和三棱锥,再求出每一部分的体积得解.【详解】(1)证明:在正方体中,连接.因为,分别是,的中点,所以.因为平面,平面,所以.因为,所以平面,平面,所以,同理,因为,所以平面,因为平面,所以平面平面;(2)连接,,则截面右侧的几何体为四棱锥和三棱锥,设正方体棱长为1,所以,所以平面将正方体分成的两部分体积之比为.【点睛】本题主要考查面面垂直关系的证明和几何体体积的计算,意在考查学生对这些知识的理解掌握水平,属于中档题.18、(1)(2)【解析】

(1)1张奖券中奖包括中特等奖、一等奖、二等奖,且、、两两互斥,利用互斥事件的概率加法公式求解即可;(2)“1张奖券不中特等奖且不中一等奖”的对立事件为“1张奖券中特等奖或中一等奖”,则利用互斥事件的概率公式求解即可【详解】(1)1张奖券中奖包括中特等奖、一等奖、二等奖,设“1张奖券中奖”为事件,则,因为、、两两互斥,所以故1张奖券中奖的概率为(2)设“1张奖券不中特等奖且不中一等奖”为事件,则事件与“1张奖券中特等奖或中一等奖”为对立事件,所以,故1张奖券不中特等奖且不中一等奖的概率为【点睛】本题考查互斥事件的概率加法公式的应用,考查古典概型,考查利用对立事件求概率19、(1);(2).【解析】

(1)由题意知,数列是等差数列,可设该数列的公差为,根据题中条件列方程解出的值,再利用等差数列的通项公式可求出数列的通项公式;(2)先求出数列的通项公式,并将该数列的通项裂项,然后利用裂项法求出数列的前项和.【详解】(1)对任意的,,则数列是等差数列,设该数列的公差为,则,解得,;(2),因此,.【点睛】本题考查等差数列的通项公式,同时也考查了裂项求和法,解题时要熟悉等差数列的几种判断方法,同时也要熟悉裂项求和法对数列通项结构的要求,考查运算求解能力,属于中等题.20、函数在区间上的最大值为2,最小值为-1【解析】试题分析:(1)将函数利用倍角公式和辅助角公式化简为,再利用周期可得最小正周期,由找出对应范围,利用正弦函数图像可得值域

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论