2026届北京市西城区161中学数学高一下期末学业质量监测试题含解析_第1页
2026届北京市西城区161中学数学高一下期末学业质量监测试题含解析_第2页
2026届北京市西城区161中学数学高一下期末学业质量监测试题含解析_第3页
2026届北京市西城区161中学数学高一下期末学业质量监测试题含解析_第4页
2026届北京市西城区161中学数学高一下期末学业质量监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届北京市西城区161中学数学高一下期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.用数学归纳法证明1+a+a2+…+an+1=(a≠1,n∈N*),在验证n=1成立时,左边的项是()A.1 B.1+a C.1+a+a2 D.1+a+a2+a42.已知等比数列中,若,且成等差数列,则()A.2 B.2或32 C.2或-32 D.-13.圆周运动是一种常见的周期性变化现象,可表述为:质点在以某点为圆心半径为r的圆周上的运动叫“圆周运动”,如图所示,圆O上的点以点A为起点沿逆时针方向旋转到点P,若连接OA、OP,形成一个角,当角,则()A. B. C. D.14.若,则一定有()A. B. C. D.5.已知,,且,则向量在向量上的投影等于()A.-4 B.4 C. D.6.已知非零向量满足,且,则与的夹角为A. B. C. D.7.函数的部分图象如图所示,函数,则下列结论正确的是()A.B.函数与的图象均关于直线对称C.函数与的图象均关于点对称D.函数与在区间上均单调递增8.直线的倾斜角大小()A. B. C. D.9.为得到函数的图象,只需将函数图象上的所有点()A.向右平移3个单位长度 B.向右平移个单位长度C.向左平移3个单位长度 D.向左平移个单位长度10.在锐角中,内角,,的对边分别为,,,若,则等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.执行如图所示的程序框图,则输出的结果为__________.12.若x、y满足约束条件,则的最大值为________.13.一个封闭的正三棱柱容器,该容器内装水恰好为其容积的一半(如图1,底面处于水平状态),将容器放倒(如图2,一个侧面处于水平状态),这时水面与各棱交点分别为E,F、,,则的值是__________.14.在正数数列an中,a1=1,且点an,an-115.已知锐角、满足,,则的值为______.16.函数的定义域为A,若时总有为单函数.例如,函数=2x+1()是单函数.下列命题:①函数=(xR)是单函数;②若为单函数,且则;③若f:AB为单函数,则对于任意bB,它至多有一个原象;④函数f(x)在某区间上具有单调性,则f(x)一定是单函数.其中的真命题是.(写出所有真命题的编号)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列an的前n项和为Sn,a1(1)分别求数列an(2)若对任意的n∈N*,18.已知数列中,,.(1)证明数列为等比数列,并求的通项公式;(2)数列满足,数列的前项和为,求证.19.已知△ABC中,A(1,﹣4),B(6,6),C(﹣2,0).求(1)过点A且平行于BC边的直线的方程;(2)BC边的中线所在直线的方程.20.已知平面向量满足:(1)求与的夹角;(2)求向量在向量上的投影.21.中,角所对的边分别为,已知.(1)求角的大小;(2)若,求面积的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

在验证时,左端计算所得的项,把代入等式左边即可得到答案.【详解】解:用数学归纳法证明,

在验证时,把当代入,左端.

故选:C.【点睛】此题主要考查数学归纳法证明等式的问题,属于概念性问题.2、B【解析】

根据等差数列与等比数列的通项公式及性质,列出方程可得q的值,可得的值.【详解】解:设等比数列的公比为q(),成等差数列,,,,解得:,,,故选B.【点睛】本题主要考查等差数列和等比数列的定义及性质,熟悉其性质是解题的关键.3、A【解析】

运用求任意角的三角函数值的步骤:化正、脱周、变锐角和求值,可得所求值.【详解】.故选:A.【点睛】本题考查任意角三角函数值的求法,属于基础题.4、C【解析】

由题,可得,且,即,整理后即可得到作出判断【详解】由题可得,则,因为,则,,则有,所以,即故选C【点睛】本题考查不等式的性质的应用,属于基础题5、A【解析】

根据公式,向量在向量上的投影等于,计算求得结果.【详解】向量在向量上的投影等于.故选A.【点睛】本题考查了向量的投影公式,只需记住公式代入即可,属于基础题型.6、B【解析】

本题主要考查利用平面向量数量积计算向量长度、夹角与垂直问题,渗透了转化与化归、数学计算等数学素养.先由得出向量的数量积与其模的关系,再利用向量夹角公式即可计算出向量夹角.【详解】因为,所以=0,所以,所以=,所以与的夹角为,故选B.【点睛】对向量夹角的计算,先计算出向量的数量积及各个向量的摸,在利用向量夹角公式求出夹角的余弦值,再求出夹角,注意向量夹角范围为.7、D【解析】

由三角函数图像可得,,再结合三角函数图像的性质逐一判断即可得解.【详解】解:由函数的部分图象可得,,即,则,又函数图像过点,则,即,又,即,即,则对于选项A,显然错误;对于选项B,函数的图像关于直线对称,即B错误;对于选项C,函数的图像关于点对称,即C错误;对于选项D,函数的增区间为,函数的增区间为,又,,即D正确,故选:D.【点睛】本题考查了利用三角函数图像求函数解析式,重点考查了三角函数图像的性质,属中档题.8、B【解析】

化简得到,根据计算得到答案.【详解】直线,即,,,故.故选:.【点睛】本题考查了直线的倾斜角,意在考查学生的计算能力.9、B【解析】

先化简得,根据函数图像的变换即得解.【详解】因为,所以函数图象上的所有点向右平移个单位长度可得到函数的图象.故选:B【点睛】本题主要考查三角函数图像的变换,意在考查学生对该知识的理解掌握水平和分析推理能力.10、D【解析】

由正弦定理将边化角可求得,根据三角形为锐角三角形可求得.【详解】由正弦定理得:,即故选:【点睛】本题考查正弦定理边化角的应用问题,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

由已知中的程序语句可知:该程序的功能是利用循环结构计算S的值并输出变量i的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【详解】模拟程序的运行,可得

S=1,i=1

满足条件S<40,执行循环体,S=3,i=2

满足条件S<40,执行循环体,S=7,i=3

满足条件S<40,执行循环体,S=15,i=4

满足条件S<40,执行循环体,S=31,i=5

满足条件S<40,执行循环体,S=13,i=1

此时,不满足条件S<40,退出循环,输出i的值为1.

故答案为:1.【点睛】本题主要考查的是程序框图,属于基础题.在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.12、18【解析】

先作出不等式组所表示的平面区域,再观察图像即可得解.【详解】解:作出不等式组所表示的平面区域,如图所示,由图可得:目标函数所在直线过点时,取最大值,即,故答案为:.【点睛】本题考查了简单的线性规划问题,重点考查了作图能力,属基础题.13、【解析】

设,则,由题意得:,由此能求出的值.【详解】设,则,由题意得:,解得,.故答案为:.【点睛】本题考查两线段比值的求法、三棱柱的体积等基础知识,考查运算求解能力,是中档题.14、2【解析】

在正数数列an中,由点an,an-1在直线x-2y=0上,知a【详解】由题意,在正数数列an中,a1=1,且a可得an-2即an因为a1=1,所以数列所以Sn故答案为2n【点睛】本题主要考查了等比数列的定义,以及等比数列的前n项和公式的应用,同时涉及到数列与解析几何的综合运用,是一道好题.解题时要认真审题,仔细解答,注意等比数列的前n项和公式和通项公式的灵活运用,着重考查了推理与运算能力,属于中档试题.15、【解析】

计算出角的取值范围,利用同角三角函数的平方关系计算出的值和的值,然后利用两角差的余弦公式可计算出的值.【详解】由题意可知,,,,则,.因此,.故答案为.【点睛】本题考查利用两角差的余弦公式求值,同时也考查了同角三角函数的平方关系求值,解题时要明确所求角与已知角之间的关系,合理利用公式是解题的关键,考查运算求解能力,属于中等题.16、②③【解析】

命题①:对于函数,设,故和可能相等,也可能互为相反数,即命题①错误;命题②:假设,因为函为单函数,所以,与已知矛盾,故,即命题②正确;命题③:若为单函数,则对于任意,,假设不只有一个原象与其对应,设为,则,根据单函数定义,,又因为原象中元素不重复,故函数至多有一个原象,即命题③正确;命题④:函数在某区间上具有单调性,并不意味着在整个定义域上具有单调性,即命题④错误,综上可知,真命题为②③.故答案为②③.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)an=3n-1【解析】

(1)设等差数列bn公差为d,则b解得d=3,bn当n≥2时,an=2Sn-1a2=2a1+1=3aan是以1为首项3为公比的等比数列,则.;(2)由(1)知,Sn原不等式可化为k≥6(n-2)若对任意的n∈N*恒成立,问题转化为求数列6(n-2)3令cn=6(n-2)解得52≤n≤7即cn的最大项为第3项,c3=62718、(1)证明见解析;;(2)【解析】

(1)先证明数列是以3为公比,以为首项的等比数列,从而,由此能求出的通项公式;(2)由(1)推导出,从而,利用错位相减法求和,利用放缩法证明.【详解】由,,得,,数列是以3为公比,以为首项的等比数列,从而,数列满足,,,,两式相减得:,,,【点睛】本题主要考查等比数列的定义、通项公式与求和公式,以及错位相减法的应用,是中档题.一般地,如果数列是等差数列,是等比数列,求数列的前项和时,可采用“错位相减法”求和,一般是和式两边同乘以等比数列的公比,然后作差求解,在写出“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式.19、(1)3x﹣4y﹣19=1(2)7x﹣y﹣11=1【解析】

(1)先求出BC的斜率,再用点斜式求出过点A且平行于BC边的直线方程;

(2)先求出BC的中点为D的坐标,再用两点式求出直线AD的方程.【详解】(1)△ABC中,∵A(1,﹣4),B(6,6),C(﹣2,1),故BC的斜率为,故过点A且平行于BC边的直线的方程为y+4(x﹣1),即3x﹣4y﹣19=1.(2)BC的中点为D(2,3),由两点式求出BC边的中线所在直线AD的方程为,即7x﹣y﹣11=1.【点睛】本题主要考查直线的斜率公式,用点斜式、两点式求直线的方程,属于基础题.20、(1);(2).【解析】

(1)由题,先求得的大小,再根据数量积的公式,可得与的夹角;(2)先求得的模长,再直接利用向量几何意义的公式,求得结果即可.【详解】(1)∵,∴,又∵,∴,∴,∴(2)∵,∴∴向量在向量上的投影为【点睛】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论