版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届四川省凉山彝族自治州数学高一下期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.数列的通项公式,则()A. B. C.或 D.不存在2.如图,已知正三棱柱的底面边长为2cm,高为5cm,则一质点自点A出发,沿着三棱柱的侧面绕行两周到达点的最短路线的长为()cm.A.12 B.13 C.14 D.153.已知变量和满足关系,变量与正相关.下列结论中正确的是()A.与负相关,与负相关B.与正相关,与正相关C.与正相关,与负相关D.与负相关,与正相关4.下列说法正确的是()A.小于的角是锐角 B.钝角是第二象限的角C.第二象限的角大于第一象限的角 D.若角与角的终边相同,则5.若满足约束条件,则的最小值是()A.0 B. C. D.36.已知函数是定义在上的偶函数,且在区间上单调递增.若实数满足,则的最大值是()A.1 B. C. D.7.在正六边形ABCDEF中,点P为CE上的任意一点,若,则()A.2 B. C.3 D.不确定8.某学校高一、高二、高三年级的学生人数分别为、、人,该校为了了解本校学生视力情况,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为的样本,则应从高三年级抽取的学生人数为()A. B. C. D.9.下列函数中,既是偶函数又在上是单调递减的是A. B. C. D.10.函数的定义域是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列满足:,则___________.12.方程的解集是______.13.已知与的夹角为求=_____.14.在中,角所对边长分别为,若,则的最小值为__________.15.若,则的值为_______.16.已知直线:与直线:平行,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱柱中,平面平面,,,为棱的中点.(1)证明:;(2)求点到平面的距离.18.函数在同一个周期内,当时,取最大值1,当时,取最小值-1.(1)求函数的单调递减区间.(2)若函数满足方程,求在内的所有实数根之和.19.设函数.(1)求不等式的解集;(2)若对于,恒成立,求的取值范围.20.已知函数.(I)当时,求不等式的解集;(II)若关于的不等式有且仅有一个整数解,求正实数的取值范围.21.如图,在直三棱柱中,,,,点N为AB中点,点M在边AB上.(1)当点M为AB中点时,求证:平面;(2)试确定点M的位置,使得平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
因为趋于无穷大,故,分离常数即可得出极限.【详解】解:因为的通项公式,要求,即求故选:B【点睛】本题考查数列的极限,解答的关键是消去趋于无穷大的式子.2、B【解析】
将三棱柱的侧面展开,得到棱柱的侧面展开图,利用矩形的对角线长,即可求解.【详解】将正三棱柱沿侧棱展开两次,得到棱柱的侧面展开图,如图所示,在展开图中,最短距离是六个矩形对角线的连线的长度,即为三棱柱的侧面上所求距离的最小值,由已知求得的长等于,宽等于,由勾股定理得,故选B.【点睛】本题主要考查了棱柱的结构特征,以及棱柱的侧面展开图的应用,着重考查了空间想象能力,以及转化思想的应用,属于基础题.3、A【解析】
因为变量和满足关系,一次项系数为,所以与负相关;变量与正相关,设,所以,得到,一次项系数小于零,所以与负相关,故选A.4、B【解析】
可通过举例的方式验证选项的对错.【详解】A:负角不是锐角,比如“”的角,故错误;B:钝角范围是“”,是第二象限的角,故正确;C:第二象限角取“”,第一象限角取“”,故错误;D:当角与角的终边相同,则.故选B.【点睛】本题考查任意角的概念,难度较易.5、A【解析】可行域为一个三角形及其内部,其中,所以直线过点时取最小值,选B.6、D【解析】由图象性质可知,,解得,故选D。7、C【解析】
延长交于点,延长交于点,可推出,,所以有,然后利用平面向量共线的推论即可求出【详解】如图,延长交于点,延长交于点设正六边形ABCDEF的边长为则在中有,,所以,所以有,同理可得因为所以因为三点共线,所以有,即故选:C【点睛】遇到三点共线时,要联想到平面向量共线的推论:三点共线,若,则.8、C【解析】
设从高三年级抽取的学生人数为,根据总体中和样本中高三年级所占的比例相等列等式求出的值.【详解】设从高三年级抽取的学生人数为,由题意可得,解得,因此,应从高三年级抽取的学生人数为,故选:C.【点睛】本题考查分层抽样中的相关计算,解题时要利用总体中每层的抽样比例相等或者总体或样本中每层的所占的比相等来列等式求解,考查运算求解能力,属于基础题.9、B【解析】
可先确定奇偶性,再确定单调性.【详解】由题意A、B、C三个函数都是偶函数,D不是偶函数也不是奇函数,排除D,A中在上不单调,C中在是递增,只有B中函数在上递减.故选B.【点睛】本题考查函数的奇偶性与单调性,解题时可分别确定函数的这两个性质.10、A【解析】
利用复合函数求定义域的方法求出函数的定义域.【详解】令x+(k∈Z),解得:x(k∈Z),故函数的定义域为{x|x,k∈Z}故选A.【点睛】本题考查的知识要点:正切函数的性质的应用,主要考察学生的运算能力和转换能力,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、0【解析】
先由条件得,然后【详解】因为所以因为,且所以,即故答案为:0【点睛】本题考查的是数列的基础知识,较简单.12、或【解析】
根据三角函数的性质求解即可【详解】,如图所示:则故答案为:或【点睛】本题考查由三角函数值求解对应自变量取值范围,结合图形求解能够避免错解,属于基础题13、【解析】
由题意可得:,结合向量的运算法则和向量模的计算公式可得的值.【详解】由题意可得:,则:.【点睛】本题主要考查向量模的求解,向量的运算法则等知识,意在考查学生的转化能力和计算求解能力.14、【解析】
根据余弦定理,可得,然后利用均值不等式,可得结果.【详解】在中,,由,所以又,当且仅当时取等号故故的最小值为故答案为:【点睛】本题考查余弦定理以及均值不等式,属基础题.15、【解析】
把已知等式展开利用二倍角余弦公式及两角和的余弦公式,整理后两边平方求解.【详解】解:由,得,,则,两边平方得:,即.故答案为.【点睛】本题考查三角函数的化简求值,考查倍角公式的应用,是基础题.16、4【解析】
利用直线平行公式得到答案.【详解】直线:与直线:平行故答案为4【点睛】本题考查了直线平行的性质,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】
(1)作为棱的中点,连结,,通过证明平面可得.(2)根据等体积法:可求得.【详解】(1)证明:连接,.∵,,∴是等边三角形.作为棱的中点,连结,,∴.∵平面平面,平面平面,平面,∴平面.∵平面,∴.∵,∴是菱形.∴.又,分别为,的中点,∴,∴.又,∴平面.又平面,∴.(2)解:连接,∵,,∴为正三角形.∵为的中点,∴.又∵平面平面,且平面平面,平面,∴平面.∴.设点到平面,的距离.在中,,,则.又∵,∴,则.【点睛】本题考查了直线与平面垂直的判定与性质,考查了等体积法求点面距,属于中档题.18、(1),;(2).【解析】
(1)先求出周期得,由最高点坐标可求得,然后由正弦函数的单调性得结论;(2)由直线与的图象交点的对称性可得.【详解】(1)由题意,∴,又,,,由得,∴,令得,∴单调减区间是,;(2)在含有三个周期,如图,的图象与在上有六个交点,前面两个交点关于直线对称,中间两个关于直线对称,最后两个关于直线对称,∴所求六个根的和为.【点睛】本题考查由三角函数的性质求解析式,考查函数的单调性,考查函数零点与方程根的分布问题.函数零点与方程根的分布问题可用数形结合思想,把方程的根转化为函数图象与直线交点的横坐标,再利用对称性求解.19、(1)见解析;(2).【解析】
(1)由得,然后分、、三种情况来解不等式;(2)由恒成立,由参变量分离法得出,并利用基本不等式求出在上的最小值,即可得出实数的取值范围.【详解】(1),,.当时,不等式的解集为;当时,原不等式为,该不等式的解集为;当时,不等式的解集为;(2)由题意,当时,恒成立,即时,恒成立.由基本不等式得,当且仅当时,等号成立,所以,,因此,实数的取值范围是.【点睛】本题考查含参二次不等式的解法,同时也考查了利用二次不等式恒成立求参数的取值范围,在含单参数的二次不等式恒成立问题时,可充分利用参变量分离法,转化为函数的最值来求解,可避免分类讨论,考查化归与转化思想的应用,属于中等题.20、(I);(II),或【解析】
(I)直接解不等式得解集;(II)对a分类讨论解不等式分析找到a满足的不等式,解不等式即得解.【详解】(I)当时,不等式为,不等式的解集为,所以不等式的解集为;(II)原不等式可化为,①当,即时,原不等式的解集为,不满足题意;②当,即时,,此时,所以;③当,即时,,所以只需,解得;综上所述,,或.【点睛】本题主要考查一元二次不等式的解法和解集,意在考查学生对这些知识的理解掌握水平和分析推理能力.21、(1)见解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年职业教育教师技能操作指导教学与实践应用题库
- 2026年心理测试与辅导训练题目
- 2026年化学实验技能测试题常见化学实验操作要点与注意事项
- 2026年建筑师职业资格考试建筑结构与材料应用
- 2026年机械工程师实践指南机械设计与制造考点预测
- 2026年海事法规专业知识题海上违法行为处罚标准详解
- 2026年企业人力资源管理人员等级考试试题
- 2026年电子工程技术实践实操考试指南电子工程师专业认证
- 2026年电力设备维护精度校准模拟卷
- 2026届浙江省“七彩阳光”数学高一下期末学业质量监测试题含解析
- 华为完整版本
- 心血管-肾脏-代谢综合征(CKM)综合管理中国专家共识2025解读课件
- 八年级英语下册集体备课教案:Unit 8 Have you read Treasure Island yet P1
- (一模)太原市2025年高三年级模拟考试(一)英语试卷(含标准答案)
- DB31-T 1433-2023 扬尘在线监测技术规范
- 加油站应急救援知识培训
- 非财务人员的财务管理培训通用课件
- 安全生产标准化绩效考核评定报告
- 安徽永牧机械集团有限公司年产10000吨钢结构加工项目环境影响报告表
- 就业单位提前退休申请书
- QSY136-2023年生产作业现场应急物资配备选用指南
评论
0/150
提交评论