版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北武邑中学2026届高一下数学期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,,,则,,的大小关系是()A. B. C. D.2.设,是定义在上的两个周期函数,的周期为,的周期为,且是奇函数.当时,,,其中.若在区间上,函数有个不同的零点,则的取值范围是()A. B. C. D.3.函数,当上恰好取得5个最大值,则实数的取值范围为()A. B. C. D.4.从一批产品中取出两件产品,事件“至少有一件是次品”的对立事件是A.至多有一件是次品 B.两件都是次品C.只有一件是次品 D.两件都不是次品5.为了了解某同学的数学学习情况,对他的6次数学测试成绩进行统计,作出的茎叶图如图所示,则下列关于该同学数学成绩的说法正确的是()A.中位数为83 B.众数为85 C.平均数为85 D.方差为196.在中,,,,则=()A. B.C. D.7.已知为等比数列,是它的前项和.若,且与的等差中项为,则()A.31 B.32 C. D.8.数列中,若,则下列命题中真命题个数是()(1)若数列为常数数列,则;(2)若,数列都是单调递增数列;(3)若,任取中的项构成数列的子数(),则都是单调数列.A.个 B.个 C.个 D.个9.已知正方形的边长为,若将正方形沿对角线折叠为三棱锥,则在折叠过程中,不能出现()A. B.平面平面 C. D.10.如图所示,在一个长、宽、高分别为2、3、4的密封的长方体装置中放一个单位正方体礼盒,现以点D为坐标原点,、、分别为x、y、z轴建立空间直角坐标系,则正确的是()A.的坐标为 B.的坐标为C.的长为 D.的长为二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的最小正周期为,且的图象过点,则方程所有解的和为________.12.已知一个几何体的三视图如图所示,其中正视图是等腰直角三角形,则该几何体的体积为__________.13.如图,正方体中,的中点为,的中点为,为棱上一点,则异面直线与所成角的大小为__________.14.已知数列中,且当时,则数列的前项和=__________.15.若过点作圆的切线,则直线的方程为_______________.16.中,,则A的取值范围为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆,直线平分圆.(1)求直线的方程;(2)设,圆的圆心是点,对圆上任意一点,在直线上是否存在与点不重合的点,使是常数,若存在,求出点坐标;若不存在,说明理由.18.已知,.求和的值.19.解关于x的不等式20.已知是递增的等比数列,且,.(1)求数列的通项公式;(2)为各项非零的等差数列,其前n项和为,已知,求数列的前n项和.21.的内角的对边分别为,已知.(1)求角;(2)若,求的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
首先确定题中,,的取值范围,再根据大小排序即可.【详解】由题知,,,,所以排序得到.故选:D.【点睛】本题主要考查了比较指数对数的大小问题,属于基础题.2、B【解析】
根据题意可知,函数和在上的图象有个不同的交点,作出两函数图象,即可数形结合求出.【详解】作出两函数的图象,如图所示:由图可知,函数和在上的图象有个不同的交点,故函数和在上的图象有个不同的交点,才可以满足题意.所以,圆心到直线的距离为,解得,因为两点连线斜率为,所以,.故选:B.【点睛】本题主要考查了分段函数的图象应用,函数性质的应用,函数的零点个数与两函数图象之间的交点个数关系的应用,意在考查学生的转化能力和数形结合能力,属于中档题.3、C【解析】
先求出取最大值时的所有的解,再解不等式,由解的个数决定出的取值范围.【详解】设,所以,解得,所以满足的值恰好只有5个,所以的取值可能为0,1,2,3,4,由,故选C.【点睛】本题主要考查正弦函数的最值以及不等式的解法,意在考查学生的数学运算能力.4、D【解析】试题分析:根据对立事件的定义,至少有n个的对立事件是至多有n﹣1个,由事件A:“至少有一件次品”,我们易得结果.解:∵至少有n个的否定是至多有n﹣1个又∵事件A:“至少有一件次品”,∴事件A的对立事件为:至多有零件次品,即是两件都不是次品.故答案为D.点评:本题考查的知识点是互斥事件和对立事件,互斥事件关键是要抓住不可能同时发生的要点,对立事件则要抓住有且只有一个发生,可以转化命题的否定,集合的补集来进行求解.5、C【解析】试题分析:A选项,中位数是84;B选项,众数是出现最多的数,故是83;C选项,平均数是85,正确;D选项,方差是,错误.考点:茎叶图的识别相关量的定义6、C【解析】
根据正弦定理,代入即可求解.【详解】因为中,,,由正弦定理可知代入可得故选:C【点睛】本题考查了正弦定理在解三角形中的应用,属于基础题.7、A【解析】
根据与的等差中项为,可得到一个等式,和,组成一个方程组,结合等比数列的性质,这个方程组转化为关于和公比的方程组,解这个方程组,求出和公比的值,再利用等比数列前项和公式,求出的值.【详解】因为与的等差中项为,所以,因此有,故本题选A.【点睛】本题考查了等差中项的性质,等比数列的通项公式以及前项和公式,8、C【解析】
对(1),由数列为常数数列,则,解方程可得的值;对(2),由函数,,求得导数和极值,可判断单调性;对(3),由,判断奇偶性和单调性,结合正弦函数的单调性,即可得到结论.【详解】数列中,若,,,(1)若数列为常数数列,则,解得或,故(1)不正确;(2)若,,,由函数,,,由,可得极值点唯一且为,极值为,由,可得,则,即有.由于,,由正弦函数的单调性,可得,则数列都是单调递增数列,故(2)正确;(3)若,任取中的9项,,,,,构成数列的子数列,,2,,9,是单调递增数列;由,可得,为奇函数;当时,,时,;当时,;时,,运用正弦函数的单调性可得或时,数列单调递增;或时,数列单调递减.所以数列都是单调数列,故(3)正确;故选:C.【点睛】本题考查数列的单调性的判断和运用,考查正弦函数的单调性,以及分类讨论思想方法,属于难题.9、D【解析】对于A:取BD中点O,因为,AO所以面AOC,所以,故A对;对于B:当沿对角线折叠成直二面角时,有面平面平面,故B对;对于C:当折叠所成的二面角时,顶点A到底面BCD的距离为,此时,故C对;对于D:若,因为,面ABC,所以,而,即直角边长与斜边长相等,显然不对;故D错;故选D点睛:本题考查了立体几何中折叠问题,要分析清楚折叠前后的变化量与不变量以及线线与线面的位置关系,属于中档题.10、D【解析】
根据坐标系写出各点的坐标分析即可.【详解】由所建坐标系可得:,,,.故选:D.【点睛】本题考查空间直角坐标系的应用,考查空间中距离的求法,考查计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由周期求出,由图象的所过点的坐标求得,【详解】由题意,又,且,∴,,由得或,又,,∴或,或,两根之和为.故答案为:.【点睛】本题考查求三角函数的解析式,考查解三角方程.掌握正切函数的性质是解题关键.12、【解析】
首先根据三视图还原几何体,再计算体积即可.【详解】由三视图知:该几何体是以底面是直角三角形,高为的三棱锥,直观图如图所示:.故答案为:【点睛】本题主要考查三视图还原直观图,同时考查了锥体的体积计算,属于简单题.13、【解析】
根据题意得到直线MP运动起来构成平面,可得到面,进而得到结果.【详解】取的中点O连接,,根据题意可得到直线MP是一条动直线,当点P变动时直线就构成了平面,因为MO均为线段的中点,故得到,四边形为平行四边形,面,故得到,又面,进而得到.故夹角为.故答案为.【点睛】这个题目考查的是异面直线的夹角的求法;常见方法有:将异面直线平移到同一平面内,转化为平面角的问题;或者证明线面垂直进而得到面面垂直,这种方法适用于异面直线垂直的时候.14、【解析】
先利用累乘法计算,再通过裂项求和计算.【详解】,数列的前项和故答案为:【点睛】本题考查了累乘法,裂项求和,属于数列的常考题型.15、或【解析】
讨论斜率不存在时是否有切线,当斜率存在时,运用点到直线距离等于半径求出斜率【详解】圆即①当斜率不存在时,为圆的切线②当斜率存在时,设切线方程为即,解得此时切线方程为,即综上所述,则直线的方程为或【点睛】本题主要考查了过圆外一点求切线方程,在求解过程中先讨论斜率不存在的情况,然后讨论斜率存在的情况,利用点到直线距离公式求出结果,较为基础。16、【解析】
由正弦定理将sin2A≤sin2B+sin2C-sinBsinC变为,然后用余弦定理推论可求,进而根据余弦函数的图像性质可求得角A的取值范围.【详解】因为sin2A≤sin2B+sin2C-sinBsinC,所以,即.所以,因为,所以.【点睛】在三角形中,已知边和角或边、角关系,求角或边时,注意正弦、余弦定理的运用.条件只有角的正弦时,可用正弦定理的推论,将角化为边.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)直线的方程为.(2)见解析【解析】
(1)结合直线l平分圆,则可知该直线过圆心,代入圆心坐标,计算参数,即可.(2)结合A,M坐标,计算直线AM方程,采取假设法,假设存在该点,计算,对应项成比例,计算参数t,即可.【详解】(1)圆的标准方程为因为直线平分圆,所以,得,从而可得直线的方程为.(2)点,,直线方程为,假设存在点,满足条件,设,则有,当是常数时,是常数,∴,∴,∵,∴.∴存在满足条件.【点睛】本题考查了直线与圆的综合问题,第一问代入圆心坐标,即可,同时采取假设法,计算,利用对应项系数成比例,建立等式,即可.18、,【解析】
把已知等式两边平方,利用同角三角函数基本关系化简,可得的值,同时由与的值可判断出,,计算出的值,可得的值.【详解】解:,两边同时平方可得:,又,,∴∴,∴【点睛】同时主要考查同角三角函数关系式的应用,相对不难,注意运算的准确性.19、见解析.【解析】试题分析:(1)讨论的取值,分为,两种情形,求出对应不等式的解集即可.试题解析:当a=0时,原不等式化为x+10,解得;当时,原不等式化为,解得;综上所述,当a=0时,不等式的解集为,当时,不等式的解集为.点睛:本题考查了含有字母系数的不等式的解法与应用问题,元二次不等式的核心还是求一元二次方程的根,然后在结合图象判定其区间解题时应用分类讨论的思想,是中档题目;常见的讨论形式有:1、对二项式系数进行讨论;2、相对应的方程是否有根进行讨论;3、对应根的大小进行讨论.20、(1);(2)【解析】
(1){an}是递增的等比数列,公比设为q,由等比数列的中项性质,结合等比数列的通项公式解方程可得所求;(2)运用等差数列的求和公式和等差数列中项性质,求得bn=2n+1,再由数列的错位相减法求和,化简可得所求和.【详解】(1)∵是递增的等比数列,∴,,又,∴,是的两根,∴,,∴,.(2)∵,∴由已知得,∴∴,化简可得.【点睛】本题考查数列的通项和求和,等差等比数列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026海南三亚市市场监督管理局上半年招聘下属事业单位工作人员1人备考题库(第1号)附答案详解(夺分金卷)
- 2026重庆大学化学化工学院科研团队劳务派遣工作人员招聘2人备考题库带答案详解(培优a卷)
- 2026甘肃武威古浪县公益性岗位工作人员招聘8人备考题库带答案详解(黄金题型)
- 2026湖北事业单位联考麻城市招聘166人备考题库带答案详解(巩固)
- 磁悬浮列车课件
- 短距离跑课件
- 短暂性脑缺血发作
- 盗窃罪教学课件
- 2026年供应链管理师专业试题集含物流与供应链优化技术
- 2026年会计中级职称考试财务成本分析重点题目
- 2026四川成都经开建工集团有限公司招聘项目制工作人员6人备考题库含答案详解
- 2026年北京市离婚协议书规范范本(无子女)
- 2026届新疆维吾尔自治区乌鲁木齐市一模英语试题(有解析)
- 2025年食品安全管理员考试题库(含标准答案)
- 2025肿瘤患者心身症状临床管理中国专家共识课件
- 中西医结合治疗肿瘤的进展
- 2026年检察院书记员面试题及答案
- 多维度解析黄河河源区径流模拟与动态演变
- 绿城物业工程部考试题及答案
- TCHES65-2022生态护坡预制混凝土装配式护岸技术规程
- 租户报装充电桩合同范本
评论
0/150
提交评论