版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省德阳市第五中学2026届数学高一下期末监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在长方体中,,,,则异面直线与所成角的大小为()A. B. C. D.或2.已知向量,,若,则()A. B. C. D.3.若实数x,y满足条件,目标函数,则z的最大值为()A. B.1 C.2 D.04.已知的模为1,且在方向上的投影为,则与的夹角为()A.30° B.60° C.120° D.150°5.椭圆以轴和轴为对称轴,经过点(2,0),长轴长是短轴长的2倍,则椭圆的方程为()A. B.C.或 D.或6.已知函数(其中),对任意实数a,在区间上要使函数值出现的次数不少于4次且不多于8次,则k值为()A.2或3 B.4或3 C.5或6 D.8或77.函数(其中)的图象如图所示,为了得到的图象,则只要将的图象()A.向右平移 B.向右平移C.向左平移 D.向左平移8.如图所示,墙上挂有边长为a的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是()A. B. C. D.与a的值有关联9.已知直线与圆交于M,N两点,若,则k的值为()A. B. C. D.10.设向量,满足,,则()A.1 B.2 C.3 D.5二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小值是.12.已知数列{an}、{bn}都是公差为1的等差数列,且a1+b1=513.若,方程的解为______.14.已知,,则______.15.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为的铁球,并注入水,使水面与球正好相切,然后将球取出,则这时容器中水的深度为___________.16.已知正方体的棱长为1,则三棱锥的体积为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知中,角的对边分别为.(1)若依次成等差数列,且公差为2,求的值;(2)若的外接圆面积为,求周长的最大值.18.在等比数列中,.(1)求数列的通项公式;(2)设,求数列的前项和.19.据某市供电公司数据,2019年1月份市新能源汽车充电量约270万度,同比2018年增长,为了增强新能源汽车的推广运用,政府加大了充电桩等基础设施的投入.现为了了解该城市充电桩等基础设施的使用情况,随机选取了200个驾驶新能源汽车的司机进行问卷调查,根据其满意度评分值(百分制)按照,,…,分成5组,制成如图所示的频率分布直方图.(1)求图中的值并估计样本数据的中位数;(2)已知满意度评分值在内的男女司机人数比为,从中随机抽取2人进行座谈,求2人均为女司机的概率.20.已知函数的最小正周期为.将函数的图象上各点的横坐标变为原来的倍,纵坐标变为原来的倍,得到函数的图象.(1)求的值及函数的解析式;(2)求的单调递增区间及对称中心21.如图,已知三棱柱的侧棱垂直于底面,,,点,分别为和的中点.(1)若,求三棱柱的体积;(2)证明:平面;(3)请问当为何值时,平面,试证明你的结论.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
平移CD到AB,则即为异面直线与所成的角,在直角三角形中即可求解.【详解】连接AC1,CD//AB,可知即为异面直线与所成的角,在中,,故选.【点睛】本题考查异面直线所成的角.常用方法:1、平移直线到相交;2、向量法.2、D【解析】
由共线向量的坐标表示可得出关于实数的方程,解出即可.【详解】向量,,且,,解得.故选:D.【点睛】本题考查利用共线向量的坐标表示求参数的值,解题时要熟悉共线向量坐标之间的关系,考查计算能力,属于基础题.3、C【解析】
画出可行域和目标函数,根据平移得到最大值.【详解】若实数x,y满足条件,目标函数如图:当时函数取最大值为故答案选C【点睛】求线性目标函数的最值:当时,直线过可行域且在轴上截距最大时,值最大,在轴截距最小时,z值最小;当时,直线过可行域且在轴上截距最大时,值最小,在轴上截距最小时,值最大.4、A【解析】
根据投影公式,直接得到结果.【详解】,.故选A.【点睛】本题考查了投影公式,属于简单题型.5、C【解析】
由于椭圆长轴长是短轴长的2倍,即,又椭圆经过点(2,0),分类讨论,即可求解.【详解】由于椭圆长轴长是短轴长的2倍,即,又椭圆经过点(2,0),则若焦点在x轴上,则,,椭圆方程为;若焦点在y轴上,则,,椭圆方程为,故选C.【点睛】本题主要考查了椭圆的方程的求解,其中解答中熟记椭圆的标准方程的形式,合理分类讨论是解答的关键,着重考查了推理与运算能力,属于基础题.6、A【解析】
根据题意先表示出函数的周期,然后根据函数值出现的次数不少于4次且不多于8次,得到周期的范围,从而得到关于的不等式,从而得到的范围,结合,得到答案.【详解】函数,所以可得,因为在区间上,函数值出现的次数不少于4次且不多于8次,所以得即与的图像在区间上的交点个数大于等于4,小于等于8,而与的图像在一个周期内有2个,所以,即解得,又因,所以得或者,故选:A.【点睛】本题考查正弦型函数的图像与性质,根据周期性求参数的值,函数与方程,属于中档题.7、A【解析】
利用函数的图像可得,从而可求出,再利用特殊点求出,进而求出三角函数的解析式,再利用三角函数图像的变换即可求解.【详解】由图可知,所以,当时,,由于,解得:,所以,要得到的图像,则需要将的图像向右平移.故选:A【点睛】本题考查了由图像求解析式以及三角函数的图像变换,需掌握三角函数图像变换的原则,属于基础题.8、C【解析】试题分析:本题考查几何概型问题,击中阴影部分的概率为.考点:几何概型,圆的面积公式.9、C【解析】
先求得圆心到直线的距离,再根据圆的弦长公式求解.【详解】圆心到直线的距离为:由圆的弦长公式:得解得故选:C【点睛】本题主要考查了直线与圆的位置关系,还考查了运算求解的能力,属于基础题.10、A【解析】
将等式进行平方,相加即可得到结论.【详解】∵||,||,∴分别平方得2•10,2•6,两式相减得4•10﹣6=4,即•1,故选A.【点睛】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】试题分析:考点:基本不等式.12、1【解析】
根据等差数列的通项公式把abn转化到a1+(bn-1)【详解】S=[=[=na1=4n+n(n-1)故答案为:12【点睛】本题主要考查等差数列通项公式和前n项和的应用,利用分组求和法是解决本题的关键.13、【解析】
运用指数方程的解法,结合指数函数的值域,可得所求解.【详解】由,即,因,解得,即.故答案:.【点睛】本题考查指数方程的解法,以及指数函数的值域,考查运算能力,属于基础题.14、【解析】
利用同角三角函数的基本关系求得的值,利用二倍角的正切公式,求得,再利用两角和的正切公式,求得的值,再结合的范围,求得的值.【详解】,,,,,,故答案:.【点睛】本题主要考查同角三角函数的基本关系,两角和的正切公式,二倍角的正切公式,根据三角函数的值求角,属于基础题.15、15【解析】
根据球的半径,先求得球的体积;根据圆与等边三角形关系,设出的边长为,由面积关系表示出圆锥的体积;设拿出铁球后水面高度为,用表示出水的体积,由即可求得液面高度.【详解】因为铁球半径为,所以由球的体积公式可得,设的边长为,则由面积公式与内切圆关系可得,解得,则圆锥的高为.则圆锥的体积为,设拿出铁球后的水面为,且到的距离为,如下图所示:则由,可得,所以拿出铁球后水的体积为,由,可知,解得,即将铁球取出后容器中水的深度为15.故答案为:15.【点睛】本题考查了圆锥内切球性质的应用,球的体积公式及圆锥体积公式的求法,属于中档题.16、.【解析】
根据题意画出正方体,由线段关系即可求得三棱锥的体积.【详解】根据题意,画出正方体如下图所示:由棱锥的体积公式可知故答案为:【点睛】本题考查了三棱锥体积求法,通过转换顶点法求棱锥的体积是常用方法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)由成等差数列,且公差为,可得,利用余弦定理可构造关于的方程,解方程求得结果;(2)设,利用外接圆面积为,求得外接圆的半径.根据正弦定理,利用表示出三边,将周长表示为关于的函数,利用三角函数的值域求解方法求得最大值.【详解】(1)依次成等差数列,且公差为,,由余弦定理得:整理得:,解得:或又,则(2)设,外接圆的半径为,则,解得:由正弦定理可得:可得:,,的周长又当,即:时,取得最大值【点睛】本题考查了正弦定理、余弦定理解三角形、三角形周长最值的求解.求解周长的最值的关键是能够将周长构造为关于角的函数,从而利用三角函数的知识来进行求解.考查了推理能力与计算能力,属于中档题.18、(1)(2)【解析】
(1)利用条件求数列的首项与公比,确定所求.(2)将分组,,再利用等比数列前n项和公式求和【详解】解:(1)设等比数列的公比为,所以,由,所以,则;(2),所以数列的前项和,则数列的前项和.【点睛】本题考查等比数列的通项,分组求和法,考查计算能力,属于中档题.19、(1),中位数的估计值为75(2)【解析】
(1)根据频率和为1计算,再判断中位数落在第三组内,再计算中位数.(2)该组男司机3人,女司机2人.记男司机为:,,,女司机为:,.排列出所有可能,计算满足条件的个数,相除得到答案.【详解】解:(1)根据频率和为1得.则.第一组和第二组的频率和为,则中位数落在第三组内.由于第三组的频率为0.4,所以中位数的估计值为75.(2)设事件:随机抽取2人进行座谈,2人均为女司机.的人数为人.∴该组男司机3人,女司机2人.记男司机为:,,,女司机为:,.5人抽取2人进行座谈有:,,,,,,,,,共10个基本事件.其中2人均为女司机的基本事件为.∴.∴随机抽取2人进行座谈,2人均为女司机的概率是.【点睛】本题考查了中位数和概率的计算,意在考查学生的计算能力和应用能力.20、(1),;(2)单调递增区间为,,对称中心为.【解析】
(1)整理可得:,利用其最小正周期为即可求得:,即可求得:,再利用函数图象平移规律可得:,问题得解.(2)令,,解不等式即可求得的单调递增区间;令,,解方程即可求得的对称中心的横坐标,问题得解.【详解】解:(1),由,得.所以.于是图象对应的解析式为.(2)由,得,所以函数的单调递增区间为,.由,解得.所以的对称中心为.【点睛】本题主要考查了二倍角公式、两角和的正弦公式应用及三角函数性质,考查方程思想及转化能力、计算能力,属于中档题。21、(1)4;(2)证明见解析;(3)时,平面,证明见解析.【解析】
(1)直接根据三棱柱体积计算公式求解即可;(2)利用中位线证明面面平行,再根据面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 短期培训总结报告
- 2026年编程基础Python语言编程认证题库
- 2026年国际关系与外交实务进阶题库
- 2026年经济分析基础试题经济指标解读与运用标准应用题
- 2026年生物化学实验技术应用与操作测试
- 2026年音乐教师资格考试模拟题含音乐理论及教学技能
- 2026年信息安全管理基础知识学习与实际操作技巧题库
- 2026年汽车维修技师等级考试题库技术实务与故障诊断
- 2026年机械工程设计与材料性能强化训练试题
- 2026年通信技术与现代信息网络构建实践试题
- 2026年金融科技支付创新报告及全球市场应用分析报告
- 尼帕病毒病防治实战
- 2026春译林版八下英语单词默写【中译英】
- 2025至2030心理咨询行业市场发展分析与发展前景及有效策略与实施路径评估报告
- 2025年农业现代化机械化服务项目可行性研究报告
- 初中英语单词表2182个(带音标)
- 老年慢性病管理新进展
- 医患沟通学课件
- 钢结构施工方案模板及范例
- 胶带机保洁管理办法
- 2025年国防科工局面试模拟题库解析
评论
0/150
提交评论