浙江省杭州五校2026届高一数学第二学期期末综合测试模拟试题含解析_第1页
浙江省杭州五校2026届高一数学第二学期期末综合测试模拟试题含解析_第2页
浙江省杭州五校2026届高一数学第二学期期末综合测试模拟试题含解析_第3页
浙江省杭州五校2026届高一数学第二学期期末综合测试模拟试题含解析_第4页
浙江省杭州五校2026届高一数学第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省杭州五校2026届高一数学第二学期期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,设,是平面内相交的两条数轴,,分别是与轴,轴正方向同向的单位向量,且,若向量,则把有序数对叫做向量在坐标系中的坐标.假设在坐标系中的坐标为,则()A. B. C. D.2.已知函数f(x)=2x+log2x,且实数a>b>c>0,满足A.x0<a B.x0>a3.在等差数列中,,是方程的两个根,则的前14项和为()A.55 B.60 C.65 D.704.盒中装有除颜色以外,形状大小完全相同的3个红球、2个白球、1个黑球,从中任取2个球,则互斥而不对立的两个事件是()A.至少有一个白球;至少有一个红球 B.至少有一个白球;红、黑球各一个C.恰有一个白球:一个白球一个黑球 D.至少有一个白球;都是白球5.已知中,,则角()A.60°或120° B.30°或90° C.30° D.90°6.已知函数的部分图象如图所示,则函数在上的最大值为()A. B. C. D.17.若点为圆C:的弦MN的中点,则弦MN所在直线的方程为()A. B. C. D.8.已知,∥则()A.6 B. C.-6 D.9.一个长方体长、宽分别为5,4,且该长方体的外接球的表面积为,则该长方体的表面积为()A.47 B.60 C.94 D.19810.若,则下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则二、填空题:本大题共6小题,每小题5分,共30分。11.九连环是我国从古至今广泛流传的一种益智游戏,它用九个圆环相连成串,以解开为胜.据明代杨慎《丹铅总录》记载:“两环互相贯为一,得其关捩,解之为二,又合面为一”.在某种玩法中,用表示解下个圆环所需的移动最少次数,满足,且,则解下4个环所需的最少移动次数为_____.12.在赛季季后赛中,当一个球队进行完场比赛被淘汰后,某个篮球爱好者对该队的7场比赛得分情况进行统计,如表:场次得分104为了对这个队的情况进行分析,此人设计计算的算法流程图如图所示(其中是这场比赛的平均得分),输出的的值______.13.一艘海轮从出发,沿北偏东方向航行后到达海岛,然后从出发沿北偏东方向航行后到达海岛,如果下次直接从沿北偏东方向到达,则______.14.在等差数列中,,,则的值为_______.15.设,,则______.16.分形几何学是美籍法国数学家伯努瓦.B.曼德尔布罗特在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路,下图是按照一定的分形规律生长成一个数形图,则第13行的实心圆点的个数是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线经过两条直线:和:的交点,直线:;(1)若,求的直线方程;(2)若,求的直线方程.18.在中,求的值.19.若数列满足:对于,都有(为常数),则称数列是公差为的“隔项等差”数列.(Ⅰ)若,是公差为8的“隔项等差”数列,求的前项之和;(Ⅱ)设数列满足:,对于,都有.①求证:数列为“隔项等差”数列,并求其通项公式;②设数列的前项和为,试研究:是否存在实数,使得成等比数列()?若存在,请求出的值;若不存在,请说明理由.20.已知时不等式恒成立,求实数的取值范围.21.已知数列{an}中,a1=1且an﹣an﹣1=3×()n﹣2(n≥2,n∈N*).(1)求数列{an}的通项公式:(2)若对任意的n∈N*,不等式1≤man≤5恒成立,求实数m的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

可得.【详解】向量,则.故选:.【点睛】本题主要考查了向量模的运算和向量的数量积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.2、D【解析】

由函数的单调性可得:当x0<c时,函数的单调性可得:f(a)>0,f(b)>0,f(c)>0,即不满足f(a)f(b)f(c)【详解】因为函数f(x)=2则函数y=f(x)在(0,+∞)为增函数,又实数a>b>c>0,满足f(a)f(b)f(c)<0,则f(a),f(b),f(c)为负数的个数为奇数,对于选项A,B,C选项可能成立,对于选项D,当x0函数的单调性可得:f(a)>0,f(b)>0,f(c)>0,即不满足f(a)f(b)f(c)<0,故选项D不可能成立,故选:D.【点睛】本题考查了函数的单调性,属于中档题.3、D【解析】

根据根与系数之间的关系求出a5+a10,利用等差数列的前n项和公式及性质进行求解即可.【详解】∵,是方程的两个根,可得,∴.故选D.【点睛】本题主要考查等差数列的前n项和公式的应用,考查了等差数列的性质的运用,根据根与系数之间的关系建立方程关系是解决本题的关键.4、B【解析】

根据对立事件和互斥事件的定义,对每个选项进行逐一分析即可.【详解】从6个小球中任取2个小球,共有15个基本事件,因为存在事件:取出的两个球为1个白球和1个红球,故至少有一个白球;至少有一个红球,这两个事件不互斥,故A错误;因为存在事件:取出的两个球为1个白球和1个黑球,故恰有一个白球:一个白球一个黑球,这两个事件不互斥,故C错误;因为存在事件:取出的两个球都是白球,故至少有一个白球;都是白球,这两个事件不互斥,故D错误;因为至少有一个白球,包括:1个白球和1个红球,1个白球和1个黑球,2个白球这3个基本事件;红、黑球各一个只包括1个红球1个白球这1个基本事件,故两个事件互斥,因还有其它基本事件未包括,故不对立.故B正确.故选:B.【点睛】本题考查互斥事件和对立事件的辨析,属基础题.5、B【解析】

由正弦定理求得,再求.【详解】由正弦定理,∴,或,时,,时,.故选:B.【点睛】本题考查正弦定理,在用正弦定理解三角形时,可能会出现两解,一定要注意.6、A【解析】

由图象求出T、ω和φ的值,写出f(x)的解析式,再求x∈[6,10]时函数f(x)的最大值.【详解】由图象可知,5﹣3=2,解得T=8,由T8,解得ω;∴函数的解析式是f(x)=sin(x+φ);∵(5,1)在f(x)的图象上,有1=sin(φ)∴φ=2kπ,k∈Z;φ=2kπ,k∈Z;又﹣π<φ<0,∴φ;∴函数的解析式是f(x)=sin(x)当x∈[6,10]时,x∈[,],∴sin(x)∈[﹣1,];∴函数f(x)的最大值是.故选A.【点睛】本题考查了三角函数的图象与性质的应用问题,熟记图像与性质是关键,是基础题.7、A【解析】

根据题意,先求出直线PC的斜率,根据MN与PC垂直求出MN的斜率,由点斜式,即可求出结果.【详解】由题意知,圆心的坐标为,则,由于MN与PC垂直,故MN的斜率,故弦MN所在的直线方程为,即.故选A【点睛】本题主要考查求弦所在直线方程,熟记直线的点斜式方程即可,属于常考题型.8、A【解析】

根据向量平行(共线),它们的坐标满足的关系式,求出的值.【详解】,且,,解得,故选A.【点睛】利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.9、C【解析】

根据球的表面积公式求得半径,利用等于体对角线长度的一半可构造方程求出长方体的高,进而根据长方体表面积公式可求得结果.【详解】设长方体高为,外接球半径为,则,解得:长方体外接球半径为其体对角线长度的一半解得:长方体表面积本题正确选项:【点睛】本题考查与外接球有关的长方体的表面积的求解问题,关键是能够明确长方体的外接球半径为其体对角线长度的一半,从而构造方程求出所需的棱长.10、D【解析】

根据不等式的基本性质逐一判断可得答案.【详解】解:A.当时,不成立,故A不正确;B.取,,则结论不成立,故B不正确;C.当时,结论不成立,故C不正确;D.若,则,故D正确.故选:D.【点睛】本题主要考查不等式的基本性质,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、7【解析】

利用的通项公式,依次求出,从而得到,即可得到答案。【详解】由于表示解下个圆环所需的移动最少次数,满足,且所以,,故,所以解下4个环所需的最少移动次数为7故答案为7.【点睛】本题考查数列的递推公式,属于基础题。12、【解析】

根据题意,模拟程序框图的运行过程,得出该程序运行的是求数据的标准差,即可求得答案.【详解】模拟程序框图的运行过程知,该程序运行的结果是求这个数据的标准差这组数据的平均数是方差是:标准差是故答案为:.【点睛】本题主要考查了根据程序框图求输出结果,解题关键是掌握程序框图基础知识和计算数据方差的解法,考查了分析能力和计算能力,属于中档题.13、【解析】

首先根据余弦定理求出,在根据正弦定理求出,即可求出【详解】有题知.所以.在中,,即,解得.所以,故答案为:【点睛】本题主要考查正弦定理和余弦定理的实际应用,熟练掌握公式为解题的关键,属于中档题.14、.【解析】

设等差数列的公差为,根据题中条件建立、的方程组,求出、的值,即可求出的值.【详解】设等差数列的公差为,所以,解得,因此,,故答案为:.【点睛】本题考查等差数列的项的计算,常利用首项和公差建立方程组,结合通项公式以及求和公式进行计算,考查方程思想,属于基础题.15、【解析】

由,根据两角差的正切公式可解得.【详解】,故答案为【点睛】本题主要考查了两角差的正切公式的应用,属于基础知识的考查.16、【解析】

观察图像可知每一个实心圆点的下一行均分为一个实心圆点与一个空心圆点,每个空心圆点下一行均为实心圆点.再利用规律找到行与行之间的递推关系即可.【详解】由图像可得每一个实心圆点的下一行均分为一个实心圆点与一个空心圆点,每个空心圆点下一行均为实心圆点.故从第三行开始,每行的实心圆点数均为前两行之和.即.故第1到第13行中实心圆点的个数分别为:.故答案为:【点睛】本题主要考查了递推数列的实际运用,需要观察求得行与行之间的实心圆点的递推关系,属于中等题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)先求出与的交点,再利用两直线平行斜率相等求直线l(2)利用两直线垂直斜率乘积等于-1求直线l【详解】(1)由,得,∴与的交点为.设与直线平行的直线为,则,∴.∴所求直线方程为.(2)设与直线垂直的直线为,则,解得.∴所求直线方程为.【点睛】两直线平行斜率相等,两直线垂直斜率乘积等于-1.18、【解析】

由即,解得:(因为舍去)或.19、(Ⅰ)(Ⅱ)①当为偶数时,,当为奇数时,;②【解析】

试题分析:(Ⅰ)由新定义知:前项之和为两等差数列之和,一个是首项为3,公差为8的等差数列前8项和,另一个是首项为17,公差为8的等差数列前7项和,所以前项之和(Ⅱ)①根据新定义知:证明目标为,,相减得,当为奇数时,依次构成首项为a,公差为2的等差数列,,当为偶数时,依次构成首项为2-a,公差为2的等差数列,②先求和:当为偶数时,;当为奇数时,故当时,,,,由,则,解得.试题解析:(Ⅰ)易得数列前项之和(Ⅱ)①()(A)(B)(B)(A)得().所以,为公差为2的“隔项等差”数列.当为偶数时,,当为奇数时,;②当为偶数时,;当为奇数时,.故当时,,,,由,则,解得.所以存在实数,使得成等比数列()考点:新定义,等差数列通项及求和20、【解析】

讨论的取值范围,分别计算,最后得到答案.【详解】解:(1)当时,恒成立,符合题意(2)当时,不合题意舍去(3)当时,综上所述【点睛】本题考查了不等式恒成立问题,忽略二次系数为0的情况是容易发生的错误.21、(1)an=3﹣2×()n﹣1(2){m|1≤m}【解析】

(1)由已知,根据递推公式可得,,……,,所有式子累加可得;(2)在(1)得出的基础之上解不等式可得实数的取值范围.【详解】(1)由已知,根据递推公式可得an﹣an﹣1=3×()n﹣2,an﹣1﹣an﹣2=3×()n﹣3,…,a2﹣a1=3×()0,由累加法得,当n≥2时,an﹣a1=3×

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论