版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省南昌市第十五中学2026届高一下数学期末达标检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆,直线,点在直线上.若存在圆上的点,使得(为坐标原点),则的取值范围是A. B. C. D.2.已知,则比多了几项()A.1 B. C. D.3.若直线平分圆的周长,则的值为()A.-1 B.1 C.3 D.54.一个三棱锥的三视图如图所示,则该棱锥的全面积为()A. B. C. D.5.在中,,点P是直线BN上一点,若,则实数m的值是()A.2 B. C. D.6.垂直于同一条直线的两条直线一定()A.平行 B.相交 C.异面 D.以上都有可能7.设变量、满足约束条件,则目标函数的最大值为()A.2 B.3 C.4 D.98.已知是等差数列,其中,,则公差()A. B. C. D.9.已知直线:是圆的对称轴.过点作圆的一条切线,切点为,则()A.2 B. C.6 D.10.在△ABC中,,P是BN上的一点,若,则实数m的值为A.3 B.1 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.数列满足,,则___________.12.若扇形的周长是,圆心角是度,则扇形的面积(单位)是__________.13.如图,在中,已知点在边上,,,则的长为____________.14.已知圆C:,点M的坐标为(2,4),过点N(4,0)作直线交圆C于A,B两点,则的最小值为________15.已知,,与的夹角为钝角,则的取值范围是_____;16.给出下列语句:①若为正实数,,则;②若为正实数,,则;③若,则;④当时,的最小值为,其中结论正确的是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线和.(1)若与互相垂直,求实数的值;(2)若与互相平行,求与与间的距离,18.如图,在矩形ABCD中,AB=3,BC=2,点M,N分别是边AB,CD上的点,且MN∥BC,.若将矩形ABCD沿MN折起使其形成60°的二面角(如图).(1)求证:平面CND⊥平面AMND;(2)求直线MC与平面AMND所成角的正弦值.19.已知等差数列满足:,.(1)求数列的通项公式;(2)求数列的前n项和为.20.已知为坐标原点,,,若.(Ⅰ)求函数的单调递减区间;(Ⅱ)当时,若方程有根,求的取值范围.21.如图,在四棱锥中,,,,,,,分别为棱,的中点.(1)证明:平面.(2)证明:平面平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据条件若存在圆C上的点Q,使得为坐标原点),等价即可,求出不等式的解集即可得到的范围【详解】圆O外有一点P,圆上有一动点Q,在PQ与圆相切时取得最大值.
如果OP变长,那么可以获得的最大值将变小.可以得知,当,且PQ与圆相切时,,
而当时,Q在圆上任意移动,存在恒成立.
因此满足,就能保证一定存在点Q,使得,否则,这样的点Q是不存在的,
点在直线上,,即
,
,
计算得出,,
的取值范围是,
故选B.考点:正弦定理、直线与圆的位置关系.2、D【解析】
由写出,比较两个等式得多了几项.【详解】由题意,则,那么:,又比多了项.故选:D.【点睛】本题考查对函数的理解和带值计算问题,属于基础题.3、D【解析】
求出圆的圆心坐标,由直线经过圆心代入解得.【详解】解:所以的圆心为因为直线平分圆的周长所以直线过圆心,即解得,故选:D.【点睛】本题考查直线与圆的位置关系的综合应用,属于基础题.4、A【解析】
数形结合,还原出该几何体的直观图,计算出各面的面积,可得结果.【详解】如图为等腰直角三角形,平面根据三视图,可知点到的距离为点到的距离为所以,故该棱锥的全面积为故选:A【点睛】本题考查三视图还原,并求表面积,难点在于还原几何体,对于一些常见的几何体要熟悉其三视图,对解题有很大帮助,属中档题.5、B【解析】
根据向量的加减运算法则,通过,把用和表示出来,即可得到的值.【详解】在中,,点是直线上一点,所以,又三点共线,所以,即.故选:B.【点睛】本题考查实数值的求法,解题时要认真审题,注意平面向量加法法则的合理运用,属于基础题.6、D【解析】试题分析:根据在同一平面内两直线平行或相交,在空间内两直线平行、相交或异面判断.解:分两种情况:①在同一平面内,垂直于同一条直线的两条直线平行;②在空间内垂直于同一条直线的两条直线可以平行、相交或异面.故选D考点:空间中直线与直线之间的位置关系.7、D【解析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出满足约束条件的可行域,如图,画出可行域,,,,平移直线,由图可知,直线经过时目标函数有最大值,的最大值为9.故选D.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.8、D【解析】
根据等差数列通项公式即可构造方程求得结果.【详解】故选:【点睛】本题考查等差数列基本量的计算,关键是熟练应用等差数列通项公式,属于基础题.9、C【解析】试题分析:直线l过圆心,所以,所以切线长,选C.考点:切线长10、C【解析】分析:根据向量的加减运算法则,通过,把用和表示出来,可得的值.详解:如图:∵,,
则
又三点共线,故得.
故选C..点睛:本题考查实数值的求法,是基础题,解题时要认真审题,注意平面向量加法法则的合理运用.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】
利用递推公式求解即可.【详解】由题得.故答案为2【点睛】本题主要考查利用递推公式求数列中的项,意在考查学生对这些知识的理解掌握水平,属于基础题.12、16【解析】
根据已知条件可计算出扇形的半径,然后根据面积公式即可计算出扇形的面积.【详解】设扇形的半径为,圆心角弧度数为,所以即,所以,所以.故答案为:.【点睛】本题考查角度与弧度的转化以及扇形的弧长和面积公式,难度较易.扇形的弧长公式:,扇形的面积公式:.13、【解析】
由诱导公式可知,在中用余弦定理可得BD的长。【详解】由题得,,在中,可得,又,代入得,解得.故答案为:【点睛】本题考查余弦定理和诱导公式,是基础题。14、8【解析】
先将所求化为M到AB中点的距离的最小值问题,再求得AB中点的轨迹为圆,利用点M到圆心的距离减去半径求得结果.【详解】设A、B中点为Q,连接QC,则QC,所以Q的轨迹是以NC为直径的圆,圆心为P(5,0),半径为1,又,即求点M到P的距离减去半径,又,所以,故答案为8【点睛】本题考查了向量的加法运算,考查了求圆中弦中点轨迹的几何方法,考查了点点距公式,考查了分析解决问题的能力,属于中档题.15、【解析】
与的夹角为钝角,即数量积小于0.【详解】因为与的夹角为钝角,所以与的数量积小于0且不平行.且所以【点睛】本题考查两向量的夹角为钝角的坐标表示,一定注意数量积小于0包括平角.16、①③.【解析】
利用作差法可判断出①正确;通过反例可排除②;根据不等式的性质可知③正确;根据的范围可求得的范围,根据对号函数图象可知④错误.【详解】①,为正实数,,即,可知①正确;②若,,,则,可知②错误;③若,可知,则,即,可知③正确;④当时,,由对号函数图象可知:,可知④错误.本题正确结果:①③【点睛】本题考查不等式性质的应用、作差法比较大小问题、利用对号函数求解最值的问题,属于常规题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)根据直线垂直的公式求解即可.(2)根据直线平行的公式求解,再利用平行线间的距离公式求解即可.【详解】解(1)∵与互相垂直,∴,解得.(2)由与互相平行,∴,解得.直线化为:,∴与间的距离.【点睛】本题主要考查了直线平行与垂直以及平行线间的距离公式.属于基础题.18、(1)见解析;(2).【解析】
(1)转化为证明MN⊥平面CND;(2)过点C作CH⊥ND与点H,则MH是MC在平面AMND内的射影,所以∠CMH即直线MC与平面AMND所成的角.【详解】(1)∵在矩形ABCD中,MN∥BC,∴MN⊥ND,MN⊥NC,又∵ND,NC是平面CND内的两条相交直线,∴MN⊥平面CND,又MN平面AMND,∴平面CND⊥平面AMND.(2)由(1)知∠CND=60°,又,AB=3,BC=2,MN∥BC,所以CN=1,DN=2,由余弦定理得,所以∠DCN=90°,过点C作CH⊥ND与点H,连接MH,则∠CMH即直线MC与平面AMND所成的角,又,所以故直线MC与平面AMND所成角的正弦值为.【点睛】本题考查面面平行证明和线面角.面面平行证明要转化为线面平行证明;求线面角关键在于作出直线在平面内的射影.19、(1)(2)【解析】
(1)由等差数列的性质,求得,进而得到,即可求得数列的通项公式;(2)由(1)可得,列用裂项法,即可求解数列的前项和.【详解】(1)由等差数列的性质,可得,所以,又由,所以数列的通项公式.(2)由(1)可得,所以.【点睛】本题主要考查等差数列的通项公式及求和公式、以及“裂项法”求和的应用,此类题目是数列问题中的常见题型,解答中确定通项公式是基础,准确计算求和是关键,能较好的考查考生的逻辑思维能力及基本计算能力,属于基础题.20、(1)的单调减区间为;(2).【解析】试题分析:(1)根据向量点积的坐标运算得到,根据正弦函数的单调性得到单调递减区间;(2)将式子变形为.有解,转化为值域问题.解析:(Ⅰ)∵,,∴其单调递减区间满足,,所以的单调减区间为.(Ⅱ)∵当时,方程有根,∴.∵,∴,∴,∴,∴.点睛:这个题目考查了,向量点积运算,三角函数的化一公式,,正弦函数的单调性问题,三角函数的值域和图像问题.第二问还要用到了方程的零点的问题.一般函数的零点和方程的根,图象的交点是同一个问题,可以互相转化.21、(1)见解析(2)见解析【解析】
(1)由勾股定理得,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年电力系统运行与维护专业考试试题库
- 2026年计算机网络安全考试题库风险评估与防御策略
- 2026年网络安全技术与防范措施进阶题库
- 2026年国际商法实务与案例分析考试题库
- 2026年旅游管理实务与政策考试模拟题
- 2026年英语八级考试听力与口语实战练习题目
- 2026年软件设计师专业技术职称考试预测试题
- 2026年医疗领域专家技能评估试题
- 2026年国际贸易实务考试题国际商法与国际贸易规则
- 2026年现代物流系统规划与运营管理试题
- DBJT15-60-2019 建筑地基基础检测规范
- CJ/T 3070-1999城市用水分类标准
- (2025)事业单位考试(面试)试题与答案
- 企业管理人员法治培训
- 污水处理厂工程监理工作总结
- 林业生态经济效益评价指标体系构建
- 合作框架协议书模板2024年
- 《相控阵超声法检测混凝土结合面缺陷技术规程》
- 多模态数据的联合增强技术
- 膝痹中医护理方案效果总结分析报告
- 新大《新疆地质概论》教案
评论
0/150
提交评论