湖北省宜昌金东方高级中学等部分示范学校2026届高一数学第二学期期末综合测试模拟试题含解析_第1页
湖北省宜昌金东方高级中学等部分示范学校2026届高一数学第二学期期末综合测试模拟试题含解析_第2页
湖北省宜昌金东方高级中学等部分示范学校2026届高一数学第二学期期末综合测试模拟试题含解析_第3页
湖北省宜昌金东方高级中学等部分示范学校2026届高一数学第二学期期末综合测试模拟试题含解析_第4页
湖北省宜昌金东方高级中学等部分示范学校2026届高一数学第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省宜昌金东方高级中学等部分示范学校2026届高一数学第二学期期末综合测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,,,则为()A. B. C. D.2.在中,,,,则的面积是().A. B. C.或 D.或3.已知平面向量,,,,且,则向量与向量的夹角为()A. B. C. D.4.在ΔABC中,内角A,B,C所对的边分别为a,b,c.若a:b:c=3:4:5,则cosA.35 B.45 C.5.已知点在直线上,若存在满足该条件的使得不等式成立,则实数的取值范围是()A. B. C. D.6.设m,n是两条不同的直线,α A.若m⊥β,n⊥β , n⊥α,则m⊥αC.若m⊥n, n∥α,则m⊥α D.若m⊥n7.在等比数列中,成等差数列,则公比等于()A.1

2 B.−1

−2 C.1

−2 D.−1

28.函数的部分图象如图,则()()A.0 B. C. D.69.如图,网格纸上小正方形的边长为,粗实线画出的是某多面体的三视图,则此几何体的表面积为()A. B. C. D.10.如果a<b<0,则下列不等式成立的是()A. B.a2<b2 C.a3<b3 D.ac2<bc2二、填空题:本大题共6小题,每小题5分,共30分。11.若2弧度的圆心角所对的弧长为4cm,则这个圆心角所夹的扇形的面积是______.12.已知圆锥底面半径为1,高为,则该圆锥的侧面积为_____.13.在ΔABC中,a比c长4,b比c长2,且最大角的余弦值是-12,则14.已知为等差数列,,前n项和取得最大值时n的值为___________.15.一圆柱的侧面展开图是长、宽分别为3、4的矩形,则此圆柱的侧面积是________.16.已知函数,,则的最大值是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.选修4-5:不等式选讲已知函数,M为不等式的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b时,.18.已知方程,.(1)若是它的一个根,求的值;(2)若,求满足方程的所有虚数的和.19.在四棱锥中,底面是平行四边形,平面,点,分别为,的中点,且,,.(1)证明:平面;(2)求直线与平面所成角的余弦值.20.甲乙两地生产某种产品,他们可以调出的数量分别为300吨、750吨.A,B,C三地需要该产品数量分别为200吨,450吨,400吨,甲地运往A,B,C三地的费用分别为6元/吨、3元/吨,5元/吨,乙地运往A,B,C三地的费用分别为5元/吨,9元/吨,6元/吨,问怎样调运,才能使总运费最小?21.已知函数,且函数是偶函数,设(1)求的解析式;(2)若不等式≥0在区间(1,e2]上恒成立,求实数的取值范围;(3)若方程有三个不同的实数根,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

利用正弦定理得到答案.【详解】根据正弦定理:即:答案选D【点睛】本题考查了正弦定理,意在考查学生的计算能力.2、C【解析】,∴,或.()当时,.∴.()当时,.∴.故选.3、B【解析】

根据可得到:,由此求得;利用向量夹角的求解方法可求得结果.【详解】由题意知:,则设向量与向量的夹角为则本题正确选项:【点睛】本题考查向量夹角的求解,关键是能够通过平方运算将模长转变为向量的数量积,从而得到向量的位置关系.4、D【解析】

设a=3k,b=4k,c=5k,利用余弦定理求cosC的值.【详解】设a=3k,b=4k,c=5k,所以cosC=故选D【点睛】本题主要考查余弦定理,意在考查学生对该知识的理解掌握水平和分析推理能力.5、B【解析】

根据题干得到,存在满足该条件的使得不等式成立,即,再根据均值不等式得到最小值为9,再由二次不等式的解法得到结果.【详解】点在直线上,故得到,存在满足该条件的使得不等式成立,即故原题转化为故答案为:B【点睛】本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.解决二元的范围或者最值问题,常用的方法有:不等式的应用,二元化一元的应用,线性规划的应用,等.6、A【解析】

依据立体几何有关定理及结论,逐个判断即可。【详解】A正确:利用“垂直于同一个平面的两条直线平行”及“两条直线有一条垂直于一个平面,则另一条也垂直于该平面”,若m⊥β且n⊥β ,则m//n,又n⊥α,所以m⊥αB错误:若m∥β, , β⊥α,则C错误:若m⊥n, n∥α,则m可能垂直于平面α,也可能平行于平面α,还可能在平面D错误:若m⊥n , n⊥β , β⊥α,则【点睛】本题主要考查立体几何中的定理和结论,意在考查学生几何定理掌握熟练程度。7、C【解析】

设出基本量,利用等比数列的通项公式,再利用等差数列的中项关系,即可列出相应方程求解【详解】等比数列中,设首项为,公比为,成等差数列,,即,或答案选C【点睛】本题考查等差数列和等比数列求基本量的问题,属于基础题8、D【解析】

先利用正切函数求出A,B两点的坐标,进而求出与的坐标,再代入平面向量数量积的运算公式即可求解.【详解】因为y=tan(x)=0⇒xkπ⇒x=4k+2,由图得x=2;故A(2,0)由y=tan(x)=1⇒xk⇒x=4k+3,由图得x=3,故B(3,1)所以(5,1),(1,1).∴()5×1+1×1=1.故选D.【点睛】本题主要考查平面向量数量积的坐标运算,考查了利用正切函数值求角的运算,解决本题的关键在于求出A,B两点的坐标,属于基础题.9、B【解析】

作出多面体的直观图,将各面的面积相加可得出该多面积的表面积.【详解】由三视图得知该几何体的直观图如下图所示:由直观图可知,底面是边长为的正方形,其面积为;侧面是等腰三角形,且底边长,底边上的高为,其面积为,且;侧面是直角三角形,且为直角,,,其面积为,,的面积为;侧面积为等腰三角形,底边长,,底边上的高为,其面积为.因此,该几何体的表面积为,故选:B.【点睛】本题考查几何体的三视图以及几何体表面积的计算,再利用三视图求几何体的表面积时,要将几何体的直观图还原,并判断出各个面的形状,结合图中数据进行计算,考查空间想象能力与计算能力,属于中等题.10、C【解析】

根据a、b的范围,取特殊值带入判断即可.【详解】∵a<b<0,不妨令a=﹣2,b=﹣1,则,a2>b2所以A、B不成立,当c=0时,ac2=bc2所以D不成立,故选:C.【点睛】本题考查了不等式的性质,考查特殊值法进行排除的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

先求出扇形的半径,再求这个圆心角所夹的扇形的面积.【详解】设扇形的半径为R,由题得.所以扇形的面积为.故答案为:【点睛】本题主要考查扇形的半径和面积的计算,意在考查学生对这些知识的理解掌握水平.12、【解析】

由已知求得母线长,代入圆锥侧面积公式求解.【详解】由已知可得r=1,h=,则圆锥的母线长l=,∴圆锥的侧面积S=πrl=2π.故答案为:2π.【点睛】本题考查圆锥侧面积的求法,侧面积公式S=πrl.13、15【解析】

由a比c长4,b比c长2,用c表示出a与b,可得出a为最大边,即A为最大角,可得出cosA的值,由A为三角形的内角,利用特殊角的三角函数值求出A的度数,同时利用余弦定理表示出cosA,将表示出的a与b代入,并根据最大角的余弦值,得到关于c的方程,求出方程的解得到c的值,然后由b,c及sinA的值,利用三角形的面积公式即可求出三角形ABC的面积.【详解】根据题意得:a=c+4,b=c+2,则a为最长边,∴A为最大角,又cosA=-12,且∴A=120cos整理得:c2-c-6=0,即(c−3)(解得:c=3或c=−2(舍去),∴a=3+4=7,b=3+2=5,则△ABC的面积S=12bcsinA=15故答案为:153【点睛】余弦定理一定要熟记两种形式:(1)a2=b2+14、20【解析】

先由条件求出,算出,然后利用二次函数的知识求出即可【详解】设的公差为,由题意得即,①即,②由①②联立得所以故当时,取得最大值400故答案为:20【点睛】等差数列的是关于的二次函数,但要注意只能取正整数.15、12【解析】

直接根据圆柱的侧面展开图的面积和圆柱侧面积的关系计算得解.【详解】因为圆柱的侧面展开图的面积和圆柱侧面积相等,所以此圆柱的侧面积为.故答案为:12【点睛】本题主要考查圆柱的侧面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.16、3【解析】函数在上为减函数,故最大值为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)详见解析.【解析】试题分析:(I)先去掉绝对值,再分,和三种情况解不等式,即可得;(II)采用平方作差法,再进行因式分解,进而可证当,时,.试题解析:(I)当时,由得解得;当时,;当时,由得解得.所以的解集.(Ⅱ)由(Ⅰ)知,当时,,从而,因此【考点】绝对值不等式,不等式的证明.【名师点睛】形如(或)型的不等式主要有两种解法:(1)分段讨论法:利用绝对值号内式子对应的方程的根,将数轴分为,,(此处设)三个部分,在每个部分去掉绝对值号并分别列出对应的不等式进行求解,然后取各个不等式解集的并集.(2)图象法:作出函数和的图象,结合图象求解.18、(1);(2)190.【解析】

(1)先设出的代数形式,把代入所给的方程,化简后由实部和虚部对应相等进行求值;(2)由方程由虚根的条件,求出的所有的取值,再由方程虚根成对出现的特点,求出所有虚根之和.【详解】解:(1)设,是的一个根,,,,解得,,,(2)方程有虚根,,解得,,,2,,又虚根是成对出现的,所有的虚根之和为.【点睛】本题是复数的综合题,考查了复数相等条件的应用,方程有虚根的等价条件,以及方程中虚根的特点,属于中档题.19、(1)见解析(2)【解析】

(1)取中点,连接,,构造平行四边形,由线线平行得到线面平行;(2)根据线面角的定义作出线面角,在直角三角形中求出数值.【详解】(1)证明:取中点,连接,,∵为中点,∴,且,又为中点,底面为平行四边形,∴,,∴,,即为平行四边形,∴,又平面,且平面,∴平面.(2)∵平面,平面,∴平面平面,过作,则平面,连结,则为直线与平面所成的夹角,由,,,得,由,得,在中,,得,在中,,∴,即直线与平面所成角的余弦值为.【点睛】这个题目考查了空间中的直线和平面的位置关系.求线面角,一是可以利用等体积计算出直线的端点到面的距离,除以线段长度就是线面角的正弦值;还可以建系,用空间向量的方法求直线的方向向量和面的法向量,再求线面角即可.20、甲到B调运300吨,从乙到A调运200吨,从乙到B调运150吨,从乙到C调运400吨,总运费最小【解析】

设从甲到A调运吨,从甲到B调运吨,则由题设可得,总的费用为,利用线性规划可求目标函数的最小值.【详解】设从甲到A调运吨,从甲到B调运吨,从甲到C调运吨,则从乙到A调运吨,从乙到B调运吨,从乙到C调运吨,设调运的总费用为元,则.由已知得约束条件为,可行域如图所示,平移直线可得最优解为.甲到B调运300吨,从乙到A调运200吨,从乙到B调运150吨,从乙到C调运400吨,总运费最小.【点睛】本题考查线性规划在实际问题中的应用,属于基础题.21、(1);(2);(3).【解析】

(1)对称轴为,对称轴为,再根据图像平移关

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论