江苏省南通市启东中学创新班2026届数学高一下期末达标检测模拟试题含解析_第1页
江苏省南通市启东中学创新班2026届数学高一下期末达标检测模拟试题含解析_第2页
江苏省南通市启东中学创新班2026届数学高一下期末达标检测模拟试题含解析_第3页
江苏省南通市启东中学创新班2026届数学高一下期末达标检测模拟试题含解析_第4页
江苏省南通市启东中学创新班2026届数学高一下期末达标检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南通市启东中学创新班2026届数学高一下期末达标检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.己知关于的不等式解集为,则突数的取值范围为()A. B.C. D.2.设是等比数列,则“”是“数列是递增数列”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件3.直线的倾斜角为A. B. C. D.4.如果圆上总存在点到原点的距离为,则实数的取值范围为()A. B. C. D.5.如图,正方形的边长为a,以A,C为圆心,正方形边长为半径分别作圆,在正方形内随机取一点,则此点取自阴影部分的概率是()A.2-π2 B.2-π36.在△ABC中,若a=2bsinA,则B为A. B. C.或 D.或7.已知,则的值域为()A. B. C. D.8.如果,且,那么下列不等式成立的是()A. B. C. D.9.下列结论正确的是()A.若则; B.若,则C.若,则 D.若,则;10.若向量满足:与的夹角为,且,则的最小值是()A.1 B. C. D.2二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在直四棱柱中,,,,分别为的中点,平面平面.给出以下几个说法:①;②直线与的夹角为;③与平面所成的角为;④平面内存在直线与平行.其中正确命题的序号是__________.12.在等差数列中,,,则公差______.13.当时,的最大值为__________.14.在上定义运算,则不等式的解集为_____.15.已知数列的前项和是,且,则______.(写出两个即可)16.函数的值域为_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.为了了解四川省各景点在大众中的熟知度,随机对岁的人群抽样了人,回答问题“四川省有哪几个著名的旅游景点?”统计结果如表.组号分组回答正确的人数回答正确的人数占本组的频率第组第组第组第组第组(1)分别求出的值;(2)从第,,组回答正确的人中用分层抽样的方法抽取人,求第,,组每组各抽取多少人?(3)通过直方图求出年龄的众数,平均数.18.已知常数且,在数列中,首项,是其前项和,且,.(1)设,,证明数列是等比数列,并求出的通项公式;(2)设,,证明数列是等差数列,并求出的通项公式;(3)若当且仅当时,数列取到最小值,求的取值范围.19.正项数列的前项和为,且.(Ⅰ)试求数列的通项公式;(Ⅱ)设,求的前项和为.(Ⅲ)在(Ⅱ)的条件下,若对一切恒成立,求实数的取值范围.20.已知两个定点,动点满足.设动点的轨迹为曲线,直线.(1)求曲线的轨迹方程;(2)若与曲线交于不同的两点,且(为坐标原点),求直线的斜率;(3)若,是直线上的动点,过作曲线的两条切线,切点为,探究:直线是否过定点.21.如图,已知在侧棱垂直于底面三棱柱中,,,,,点是的中点.(1)求证:;(2)求证:(3)求三棱锥的体积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

利用绝对值的几何意义求解,即表示数轴上与和-2的距离之和,其最小值为.【详解】∵,∴由解集为,得,解得.故选C.【点睛】本题考查绝对值不等式,考查绝对值的性质,解题时可按绝对值定义去绝对值符号后再求解,也可应用绝对值的几何意义求解.不等式解集为,可转化为的最小值不小于1,这是解题关键.2、B【解析】

由,可得,解得或,根据等比数列的单调性的判定方法,结合充分、必要条件的判定方法,即可求解,得到答案.【详解】设等比数列的公比为,则,可得,解得或,此时数列不一定是递增数列;若数列为递增数列,可得或,所以“”是“数列为递增数列”的必要不充分条件.故选:B.【点睛】本题主要考查了等比数列的通项公式与单调性,以及充分条件、必要条件的判定,其中解答中熟记等比数列的单调性的判定方法是解答本题的关键,着重考查了推理与运算能力,属于基础题.3、D【解析】

求得直线的斜率,由此求得直线的倾斜角.【详解】依题意,直线的斜率为,对应的倾斜角为,故选D.【点睛】本小题主要考查由直线一般式求斜率和倾斜角,考查特殊角的三角函数值,属于基础题.4、B【解析】

将圆上的点到原点的距离转化为圆心到原点的距离加减半径得到答案.【详解】,圆心为半径为1圆心到原点的距离为:如果圆上总存在点到原点的距离为即圆心到原点的距离即故答案选B【点睛】本题考查了圆上的点到原点的距离,转化为圆心到原点的距离加减半径是解题的关键.5、D【解析】

将阴影部分拆分成两个小弓形,从而可求解出阴影部分面积,根据几何概型求得所求概率.【详解】如图所示:阴影部分可拆分为两个小弓形则阴影部分面积:S正方形面积:S=∴所求概率P=本题正确选项:D【点睛】本题考查利用几何概型求解概率问题,属于基础题.6、C【解析】,,则或,选C.7、C【解析】

由已知条件,先求出函数的周期,由于,即可求出值域.【详解】因为,所以,又因为,所以当时,;当时,;当时,,所以的值域为.故选:C.【点睛】本题考查三角函数的值域,利用了正弦函数的周期性.8、D【解析】

由,且,可得.再利用不等式的基本性质即可得出,.【详解】,且,.,,因此.故选:.【点睛】本题考查了不等式的基本性质,属于基础题.9、D【解析】

根据不等式的性质,结合选项,进行逐一判断即可.【详解】因,则当时,;当时,,故A错误;因,则或,故B错误;因,才有,条件不足,故C错误;因,则,则只能是,故D正确.故选:D.【点睛】本题考查不等式的基本性质,需要对不等式的性质非常熟练,属基础题.10、D【解析】

设作图,由可知点在以线段为直径的圆上,由图可知,,代入所求不等式利用圆的特征化简即可.【详解】如图,设,取线段的中点为,连接OE交圆于点D,因为即,所以点在以线段为直径的圆上(E为圆心),且,于是.故选:D【点睛】本题考查向量的线性运算,垂直向量的数量积表示,几何图形在向量运算中的应用,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、①③.【解析】

利用线面平行的性质定理可判断①;利用平行线的性质可得直线与的夹角等于直线与所成的角,在中即可判断②;与平面所成的角即为与平面所成的角可判断③;根据直线与平面的位置关系可判断④;【详解】对于①,由,平面平面,则,又,所以,故①正确;对于②,连接,由,即直线与的夹角等于直线与所成的角,在中,,显然直线与的夹角不为,故②不正确;对于③,与平面所成的角即为与平面所成的角,根据三棱柱为直棱柱可知为与平面所成的角,在梯形中,,,,可解得与平面所成的角为,故③正确;对于④,由于与平面相交,故平面内不存在与平行的直线.故答案为:①③【点睛】本题是一道立体几何题目,考查了线面平行的性质定理,求线面角以及直线与平面之间的位置关系,属于中档题.12、3【解析】

根据等差数列公差性质列式得结果.【详解】因为,,所以.【点睛】本题考查等差数列公差,考查基本分析求解能力,属基础题.13、-3.【解析】

将函数的表达式改写为:利用均值不等式得到答案.【详解】当时,故答案为-3【点睛】本题考查了均值不等式,利用一正二定三相等将函数变形是解题的关键.14、【解析】

根据定义运算,把化简得,求出其解集即可.【详解】因为,所以,即,得,解得:故答案为:.【点睛】本题考查新定义,以及解一元二次不等式,考查运算的能力,属于基础题.15、或【解析】

利用已知求的公式,即可算出结果.【详解】(1)当,得,∴,∴.(2)当时,,两式作差得,,化简得,∴或,即(常数)或,当(常数)时,数列是以1为首项,2为公差的等差数列,所以;当时,数列是以1为首项,﹣1为公比的等比数列,所以.【点睛】本题主要考查利用与的关系公式,即,求的方法应用.16、【解析】

分析函数在区间上的单调性,由此可求出该函数在区间上的值域.【详解】由于函数和函数在区间上均为增函数,所以,函数在区间上也为增函数,且,,当时,,因此,函数的值域为.故答案为:.【点睛】本题考查函数值域的求解,解题的关键就是判断出函数的单调性,考查分析问题和解决问题的能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)第组抽取人,第组抽取人,第组抽取人;(3)40,.【解析】

(1)由频率分布表得第四组人数为25人,由频率分布直方图得第四组的频率为0.25,从而求出.由此求出各组人数,进而能求出,,,的值.(2)由第2,3,4组回答正确的人分别有18、27、9人,从中用分层抽样的方法抽取6人,由此能求出第2,3,4组每组各抽取多少人.(3)由频率分布直方图能求出年龄的众数,平均数.【详解】(1)由频率分布表得第四组人数为:人,由频率分布直方图得第四组的频率为,.第一组抽取的人数为:人,第二组抽取的人数为:人,第三组抽取的人数为:人,第五组抽取的人数为:人,.(2)第,,组回答正确的人分别有、、人,从中用分层抽样的方法抽取人,第组抽取:人,第组抽取:人,第组抽取:人.(3)由频率分布直方图得:年龄的众数为:,年龄的平均数为:【点睛】本题考查频率、频数、众数、平均数的求法,考查分层抽样的应用,是基础题,解题时要认真审题,注意频率分布直方图的性质的合理运用.18、(1)证明见解析,;(2)证明见解析,;(3).【解析】

(1)令,求出的值,再令,由,得出,将两式相减得,再利用等比数列的定义证明为常数,可得出数列为等比数列,并确定等比数列的首项和公比,可求出;(2)由题意得出,再利用等差数列的定义证明出数列为等差数列,确定等差数列的首项和公差,可求出数列的通项公式;(3)求出数列的通项公式,由数列在时取最小值,可得出当时,,当时,,再利用参变量分离法可得出实数的取值范围.【详解】(1)当时,有,即,;当时,由,可得,将上述两式相减得,,,且,所以,数列是以,以为公比的等比数列,;(2)由(1)知,,由等差数列的定义得,且,所以,数列是以为首项,以为公差的等差数列,因此,;(3)由(2)知,,,由数列在时取最小值,可得出当时,,当时,,由,得,得在时恒成立,由于数列在时单调递减,则,此时,;由,得,得在时恒成立,由于数列在时单调递减,则,此时,.综上所述:实数的取值范围是.【点睛】本题考查利用定义证明等比数列和等差数列,证明时需结合题中数列递推式的结构进行证明,同时也考查数列最值问题,需要结合题中条件转化为与项的符号相关的问题,利用参变量分离法可简化计算,考查化归与转化思想和运算求解能力,综合性较强,属于难题.19、(Ⅰ);(Ⅱ);(Ⅲ).【解析】

(Ⅰ)将所给条件式子两边同时平方,利用递推法可得的表达式,由两式相减,变形即可证明数列为等差数列,进而结合首项与公差求得的通项公式.(Ⅱ)由(Ⅰ)中可求得.将与代入即可求得数列的通项公式,利用裂项法即可求得前项和.(Ⅲ)先求得的取值范围,结合不等式,即可求得的取值范围.【详解】(Ⅰ)因为正项数列的前项和为,且化简可得由递推公式可得两式相减可得,变形可得即,由正项等比数列可得所以而当时,解得所以数列是以为首项,以为公差的等差数列因而(Ⅱ)由(Ⅰ)可知则代入中可得所以(Ⅲ)由(Ⅱ)可知则,所以数列为单调递增数列,则且当时,,即所以因为对一切的恒成立则满足,解不等式组可得即实数的取值范围为【点睛】本题考查了等差数列通项公式与求和公式的应用,裂项求和法的应用,数列的单调性与不等式关系,综合性强,属于中档题.20、(1);(2);(3).【解析】

(1)设点P坐标为(x,y),运用两点的距离公式,化简整理,即可得到所求轨迹的方程;(2)由,则点到边的距离为,由点到线的距离公式得直线的斜率;(3)由题意可知:O,Q,M,N四点共圆且在以OQ为直径的圆上,设,则圆的圆心为运用直径式圆的方程,得直线的方程为,结合直线系方程,即可得到所求定点.【详解】(1)设点的坐标为由可得,,整理可得所以曲线的轨迹方程为.(2)依题意,,且,则点到边的距离为即点到直线的距离,解得所以直线的斜率为.(3)依题意,,则都在以为直径的圆上是直线上的动点,设则圆的圆心为,且经过坐标原点即圆的方程为,又因为在曲线上由,可得即直线的方程为由且可得,解得所以直线是过定点.【点睛】本题考查点的轨迹方程的求法,注意运用两点的距离公式,考查直线和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论