版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届甘肃省酒泉市瓜州县高一下数学期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.同时掷两枚骰子,则向上的点数相等的概率为()A. B. C. D.2.已知向量,则与夹角的大小为()A. B. C. D.3.在ΔABC中,已知BC=2AC,B∈[πA.[π4C.[π44.等差数列中,若,则=()A.11 B.7 C.3 D.25.是空气质量的一个重要指标,我国标准采用世卫组织设定的最宽限值,即日均值在以下空气质量为一级,在之间空气质量为二级,在以上空气质量为超标.如图是某地11月1日到10日日均值(单位:)的统计数据,则下列叙述不正确的是()A.这天中有天空气质量为一级 B.这天中日均值最高的是11月5日C.从日到日,日均值逐渐降低 D.这天的日均值的中位数是6.已知函数的值域为,且图象在同一周期内过两点,则的值分别为()A. B.C. D.7.的值为()A.1 B. C. D.8.在区间[–1,1]上任取两个数x和y,则x2+y2≥1的概率为()A. B.C. D.9.将的图象向左平移个单位长度,再向下平移个单位长度得到的图象,若,则()A. B. C. D.10.下列各角中,与角终边相同的角是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.住在同一城市的甲、乙两位合伙人,约定在当天下午4.00-5:00间在某个咖啡馆相见商谈合作事宜,他们约好当其中一人先到后最多等对方10分钟,若等不到则可以离去,则这两人能相见的概率为__________.12.已知正三棱柱木块,其中,,一只蚂蚁自点出发经过线段上的一点到达点,当沿蚂蚁走过的最短路径,截开木块时,两部分几何体的体积比为______.13.已知单位向量与的夹角为,且,向量与的夹角为,则=.14.某餐厅的原料支出与销售额(单位:万元)之间有如下数据,根据表中提供的数据,用最小二乘法得出与的线性回归方程,则表中的值为_________.245682535557515.设满足不等式组,则的最小值为_____.16.在数列中,,则______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知的三个顶点,,.(1)求边所在直线的方程;(2)求边上中线所在直线的方程.18.在平面直角坐标系中,已知曲线的方程是(,).(1)当,时,求曲线围成的区域的面积;(2)若直线:与曲线交于轴上方的两点,,且,求点到直线距离的最小值.19.记为等差数列的前项和,已知,.(Ⅰ)求的通项公式;(Ⅱ)求,并求的最小值.20.已知{an}是等差数列,设数列{bn}的前n项和为Sn,且2bn=b1(1+Sn),bn≠0,又a2b2=4,a7+b3=1.(1)求{an}和{bn}的通项公式;(2)令cn=anbn(n∈N*),求{cn}的前n项和Tn21.平面直角坐标系中,圆M与y轴相切,并且经过点,.(1)求圆M的方程;(2)过点作圆M的两条互垂直的弦AC、BD,求四边形ABCD面积的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
利用古典概型的概率公式即可求解.【详解】同时掷两枚骰子共有种情况,其中向上点数相同的有种情况,其概率为.故选:D【点睛】本题考查了古典概型的概率计算公式,解题的关键是找出基本事件个数,属于基础题.2、D【解析】
。分别求出,,,利用即可得出答案.【详解】设与的夹角为故选:D【点睛】本题主要考查了求向量的夹角,属于基础题.3、D【解析】
由BC=2AC,根据正弦定理可得:sinA=2sinB,由角【详解】由于在ΔABC中,有BC=2AC,根据正弦定理可得由于B∈[π6,π4]由于在三角形中,A∈0,π,由正弦函数的图像可得:A∈[故答案选D【点睛】本题考查正弦定理在三角形中的应用,以及三角函数图像的应用,属于中档题.4、A【解析】
根据和已知条件即可得到.【详解】等差数列中,故选A.【点睛】本题考查了等差数列的基本性质,属于基础题.5、D【解析】
由折线图逐一判断各选项即可.【详解】由图易知:第3,8,9,10天空气质量为一级,故A正确,11月5日日均值为82,显然最大,故B正确,从日到日,日均值分别为:82,73,58,34,30,逐渐降到,故C正确,中位数是,所以D不正确,故选D.【点睛】本题考查了频数折线图,考查读图,识图,用图的能力,考查中位数的概念,属于基础题.6、C【解析】
根据值域先求,再代入数据得到最大值和最小值对应相差得到答案.【详解】函数的值域为即,图象在同一周期内过两点故答案选C【点睛】本题考查了三角函数的最大值最小值,周期,意在考查学生对于三角函数公式和性质的灵活运用和计算能力.7、A【解析】
利用诱导公式将转化到,然后直接计算出结果即可.【详解】因为,所以.故选:A.【点睛】本题考查正切诱导公式的简单运用,难度较易.注意:.8、A【解析】由题意知,所有的基本事件构成的平面区域为,其面积为.设“在区间[-1,1]上任选两个数,则”为事件A,则事件A包含的基本事件构成的平面区域为,其面积为.由几何概型概率公式可得所求概率为.选A.9、D【解析】因为,所以,因此,选D.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.10、B【解析】
给出具体角度,可以得到终边相同角的表达式.【详解】角终边相同的角可以表示为,当时,,所以答案选择B【点睛】判断两角是否是终边相同角,即判断是否相差整数倍.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
将甲、乙到达时间设为(以为0时刻,单位为分钟).则相见需要满足:画出图像,根据几何概型公式得到答案.【详解】根据题意:将甲、乙到达时间设为(以为0时刻,单位为分钟)则相见需要满足:画出图像:根据几何概型公式:【点睛】本题考查了几何概型的应用,意在考查学生解决问题的能力.12、【解析】
将正三棱柱的侧面沿棱展开成平面,连接与的交点即为满足最小时的点,可知点为棱的中点,即可计算出沿着蚂蚁走过的路径截开木块时两几何体的体积之比.【详解】将正三棱柱沿棱展开成平面,连接与的交点即为满足最小时的点.由于,,再结合棱柱的性质,可得,一只蚂蚁自点出发经过线段上的一点到达点,当沿蚂蚁走过的最短路径,为的中点,因为三棱柱是正三棱柱,所以当沿蚂蚁走过的最短路径,截开木块时,两部分几何体的体积比为:.故答案为:.【点睛】本题考查棱柱侧面最短路径问题,涉及棱柱侧面展开图的应用以及几何体体积的计算,考查分析问题解决问题能力,是中档题.13、【解析】试题分析:因为所以考点:向量数量积及夹角14、60【解析】
由样本中心过线性回归方程,求得,,代入即可求得【详解】由题知:,,将代入得故答案为:60【点睛】本题考查样本中心与最小二乘法公式的关系,易错点为将直接代入求解,属于中档题15、-6【解析】作出可行域,如图内部(含边界),作直线,当向下平移时,减小,因此当过点时,为最小值.16、20【解析】
首先根据已知得到:是等差数列,公差,再计算即可.【详解】因为,所以数列是等差数列,公差..故答案为:【点睛】本题主要考查等差数列的判断和等差数列项的求法,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)由直线的两点式方程求解即可;(2)先由中点坐标公式求出中点的坐标,再结合直线的两点式方程求解即可.【详解】(1)因为,,由直线的两点式方程可得:边所在直线的方程,化简可得;(2)由,,则中点,即,则边上中线所在直线的方程为,化简可得.【点睛】本题考查了中点坐标公式,重点考查了直线的两点式方程,属基础题.18、(1)4;(2).【解析】
(1)当,时,曲线的方程是,对绝对值内的数进行讨论,得到四条直线围成一个菱形,并求出面积为4;(2)对进行讨论,化简曲线方程,并与直线方程联立,求出点的坐标,由得到的关系,再利用点到直线的距离公式求出,从而求得.【详解】(1)当,时,曲线的方程是,当时,,当时,,当时,方程等价于,当时,方程等价于,当时,方程等价于,当时,方程等价于,曲线围成的区域为菱形,其面积为;(2)当,时,有,联立直线可得,当,时,有,联立直线可得,由可得,即有,化为,点到直线距离,由题意可得,,,即,可得,,可得当,即时,点到直线距离取得最小值.【点睛】解析几何的思想方法是坐标法,通过代数运算解决几何问题,本题对运算能力的要求是比较高的.19、(1),(2),最小值为−1.【解析】
(Ⅰ)根据等差数列的求和公式,求得公差d,即可表示出的通项公式;(Ⅱ)根据等差数列的求和公式得Sn=n2-8n,根据二次函数的性质,可得Sn的最小值.【详解】(I)设的公差为d,由题意得.由得d=2.所以的通项公式为.(II)由(I)得.所以当n=4时,取得最小值,最小值为−1.【点睛】本题考查了等差数列的通项公式,考查了等差数列的前n项的和公式,考查了等差数列前n项和的最值问题;求等差数列前n项和的最值有两种方法:①函数法,②邻项变号法.20、(2)an=n;bn=2n﹣2(2)Tn=(n﹣2)•2n+2【解析】
(2)运用数列的递推式,以及等比数列的通项公式可得bn,{an}是公差为的等差数列,运用等差数列的通项公式可得首项和公差,可得所求通项公式;
(2)求得,由数列的错位相减法求和,结合等比数列的求和公式,即可得到所求和.【详解】(2)2bn=b2(2+Sn),bn≠0,n=2时,2b2=b2(2+S2)=b2(2+b2),解得b2=2,n≥2时,2bn﹣2=2+Sn﹣2,且2bn=2+Sn,相减可得2bn﹣2bn﹣2=Sn﹣Sn﹣2=bn,即bn=2bn﹣2,可得bn=2n﹣2,设{an}是公差为d的等差数列,a2b2=4,a7+b3=2即为a2+d=2,a2+6d=7,解得a2=d=2,可得an=n;(2)cn=anbn=n•2n﹣2,前n项和,,两式相减可得﹣Tn=2+2+4+…+2n﹣2﹣n2nn2n,化简可得Tn=(n﹣2)2n+2.【点睛】本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的递推式和数列的错位相减法求和,化简运算能力,属于中档题.21、(1);(2)最大值为1.【解析】
(1)通过分析题意,可设圆心坐标为,再通过待定系数法即可求得。(2)若采用直线方程和圆的方程联
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年软件编程与软件开发核心技术练习题
- 2026年化学实验操作与化学物质分析模拟题
- 2026年网络技术发展与安全防范应用考核
- 2026年地理信息获取与空间分析能力进阶测试题集
- 2026年社会现象人口结构变化与城市化发展题目
- 贵州省遵义市汇川区航天高级中学2026届高一生物第二学期期末监测试题含解析
- 2026年国际视野下的城市治理与创新发展题目
- 2026年健康管理师营养与饮食指导实践认证题库
- 内蒙古包头铁路第一中学2026届高一下生物期末教学质量检测试题含解析
- 2026年能源管理优化数字化监控系统实操考试
- DB37∕T 5237-2022 《超低能耗公共建筑技术标准》
- 手术后疼痛评估与护理团体标准
- 光伏公司销售日常管理制度
- CJ/T 510-2017城镇污水处理厂污泥处理稳定标准
- 山东省潍坊市2025届高三高考模拟考试物理试题及答案
- 企业人力资源管理效能评估表
- 2025年行政人事年终总结
- 短暂性脑缺血发作课件
- DB34T 1909-2013 安徽省铅酸蓄电池企业职业病危害防治工作指南
- 优衣库服装设计风格
- 2024年重庆中考物理模拟考试试题
评论
0/150
提交评论