2026届山东省博兴县数学高一下期末统考模拟试题含解析_第1页
2026届山东省博兴县数学高一下期末统考模拟试题含解析_第2页
2026届山东省博兴县数学高一下期末统考模拟试题含解析_第3页
2026届山东省博兴县数学高一下期末统考模拟试题含解析_第4页
2026届山东省博兴县数学高一下期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山东省博兴县数学高一下期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知a,b,c为△ABC的三个内角A,B,C的对边,向量=,=(cosA,sinA),若与夹角为,则acosB+bcosA=csinC,则角B等于()A. B. C. D.2.已知三棱锥O-ABC,侧棱OA,OB,OC两两垂直,且OA=OB=OC=2,则以O为球心且1为半径的球与三棱锥O-ABC重叠部分的体积是()A.π8 B.π6 C.π3.在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如右面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h~120km/h,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有()A.30辆 B.1700辆 C.170辆 D.300辆4.已知实数满足且,则下列关系中一定正确的是()A. B. C. D.5.函数,,的部分图象如图所示,则函数表达式为()A. B.C. D.6.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积为()A. B. C. D.7.如图所示,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是()A. B. C. D.8.已知是等差数列,且,,则()A.-5 B.-11 C.-12 D.39.已知,则比多了几项()A.1 B. C. D.10.等差数列中,,则数列前9项的和等于()A.66 B.99 C.144 D.297二、填空题:本大题共6小题,每小题5分,共30分。11.已知是第二象限角,且,且______.12.已知函数的部分图象如图所示,则的值为_________.13.如图,曲线上的点与轴的正半轴上的点及原点构成一系列正三角形,,,设正三角形的边长为(记为),.数列的通项公式=______.14.如图,将全体正整数排成一个三角形数阵,按照这样的排列规律,第行从右至左的第3个数为___________.15.已知等差数列的公差为2,若成等比数列,则________.16.已知三棱柱的侧棱与底面边长都相等,在底面内的射影为的中心,则与底面所成角的正弦值等于.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,函数的图象与轴交于点,且该函数的最小正周期为.(1)求和的值;(2)已知点,点是该函数图象上一点,点是的中点,当时,求的值.18.已知公差不为0的等差数列{an}满足a3=9,a(1)求{a(2)设数列{bn}满足bn=1n(19.已知向量,.(1)若,在集合中取值,求满足的概率;(2)若,在区间内取值,求满足的概率.20.三个内角A,B,C对应的三条边长分别是,且满足.(1)求角的大小;(2)若,,求.21.为选派一名学生参加全市实践活动技能竟赛,A、B两位同学在学校的学习基地现场进行加工直径为20mm的零件测试,他俩各加工的10个零件直径的相关数据如图所示(单位:mm)A、B两位同学各加工的10个零件直径的平均数与方差列于下表;平均数方差A200.016B20s2B根据测试得到的有关数据,试解答下列问题:(Ⅰ)计算s2B,考虑平均数与方差,说明谁的成绩好些;(Ⅱ)考虑图中折线走势情况,你认为派谁去参赛较合适?请说明你的理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据向量夹角求得角的度数,再利用正弦定理求得即得解.【详解】由已知得:所以所以由正弦定理得:所以又因为所以因为所以所以故选B.【点睛】本题考查向量的数量积和正弦定理,属于中档题.2、B【解析】

根据三棱锥三条侧棱的关系,得到球与三棱锥的重叠部分为球的18【详解】∵三棱锥O-ABC,侧棱OA,OB,OC两两互相垂直,且OA=OB=OC=2,以O为球心且1为半径的球与三棱锥O-ABC重叠部分的为球的18即对应的体积为18【点睛】本题主要考查球体体积公式的应用,解题的关键就是利用三棱锥与球的关系,考查空间想象能力,属于中等题。3、B【解析】

由频率分布直方图求出在这段时间内以正常速度通过该处的汽车的频率,由此能估2000辆车中,在这段时间内以正常速度通过该处的汽车约有多少辆.【详解】由频率分布直方图得:在这段时间内以正常速度通过该处的汽车的频率为0.03+0.035+0.02×10=0.85∴估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有2000×0.85=1700(辆),故选B.【点睛】本题主要考查频率分布直方图的应用,属于中档题.直方图的主要性质有:(1)直方图中各矩形的面积之和为1;(2)组距与直方图纵坐标的乘积为该组数据的频率;(3)每个矩形的中点横坐标与该矩形的纵坐标相乘后求和可得平均值;(4)直观图左右两边面积相等处横坐标表示中位数.4、D【解析】

由已知得,然后根据不等式的性质判断.【详解】由且,,由得,A错;由得,B错;由于可能为0,C错;由已知得,则,D正确.故选:D.【点睛】本题考查不等式的性质,掌握不等式性质是解题关键,特别是性质:不等式两同乘以一个正数,不等号方向不变,不等式两边同乘以一个负数,不等号方向改变.5、A【解析】

根据图像的最值求出,由周期求出,可得,再代入特殊点求出,化简即得所求.【详解】由图像知,,,解得,因为函数过点,所以,,即,解得,因为,所以,.故选:A【点睛】本题考查根据图像求正弦型函数的解析式,三角函数诱导公式,属于基础题.6、C【解析】

试题分析:将边长为1的正方形以其一边所在直线为旋转轴旋转一周得到的几何体为底面为半径为的圆、高为1的圆柱,其侧面展开图为长为,宽为1,所以所得几何体的侧面积为.故选C.7、A【解析】

根据题意,分析可得,由三角形面积公式计算可得△DEF和△ACF的面积,进而可得△ABC的面积,由几何概型公式计算可得答案.【详解】根据题意,为等边三角形,则,则,中,,其面积,中,,,其面积,则的面积,故在大等边三角形中随机取一点,则此点取自小等边三角形的概率,故选:A.【点睛】本题主要考查几何概型中的面积类型,基本方法是:分别求得构成事件A的区域面积和试验的全部结果所构成的区域面积,两者求比值,即为概率.8、B【解析】

由是等差数列,求得,则可求【详解】∵是等差数列,设,∴故故选:B【点睛】本题考查等差数列的通项公式,考查计算能力,是基础题9、D【解析】

由写出,比较两个等式得多了几项.【详解】由题意,则,那么:,又比多了项.故选:D.【点睛】本题考查对函数的理解和带值计算问题,属于基础题.10、B【解析】

根据等差数列性质,结合条件可得,进而求得.再根据等差数列前n项和公式表示出,即可得解.【详解】等差数列中,,则,解得,因而,由等差数列前n项和公式可得,故选:B.【点睛】本题考查了等差数列性质的应用,等差数列前n项和公式的用法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用同角三角函数的基本关系求出,然后利用诱导公式可求出的值.【详解】是第二象限角,则,由诱导公式可得.故答案为:.【点睛】本题考查利用同角三角函数的基本关系和诱导公式求值,考查计算能力,属于基础题.12、【解析】

根据图像可得,根据0所在位置,处于函数的单调减区间,即可得解.【详解】由图可得:,或由于0在函数的单调减区间内,所以.故答案为:【点睛】此题考查根据三角函数的图象求参数的取值,常用代入法求解,判定初相的取值时,根据图象结合单调性取值.13、【解析】

先得出直线的方程为,与曲线的方程联立得出的坐标,可得出,并设,根据题中条件找出数列的递推关系式,结合递推关系式选择作差法求出数列的通项公式,即利用求出数列的通项公式。【详解】设数列的前项和为,则点的坐标为,易知直线的方程为,与曲线的方程联立,解得,;当时,点、,所以,点,直线的斜率为,则,即,等式两边平方并整理得,可得,以上两式相减得,即,易知,所以,即,所以,数列是等差数列,且首项为,公差也为,因此,.故答案为:。【点睛】本题考查数列通项的求解,根据已知条件找出数列的递推关系是解题的关键,在求通项公式时需结合递推公式的结构选择合适的方法求解数列的通项公式,考查分析问题的能力,属于难题。14、【解析】

由题可以先算出第行的最后一个数,再从右至左算出第3个数即可.【详解】由图得,第行有个数,故前行一共有个数,即第行最后一个数为,故第行从右至左的第3个数为.【点睛】本题主要考查等差数列求和问题,注意从右至左的第3个数为最后一个数减2.15、【解析】

利用等差数列{an}的公差为1,a1,a3,a4成等比数列,求出a1,即可求出a1.【详解】∵等差数列{an}的公差为1,a1,a3,a4成等比数列,

∴(a1+4)1=a1(a1+2),

∴a1=-8,

∴a1=-2.

故答案为-2..【点睛】本题考查等比数列的性质,考查等差数列的通项,考查学生的计算能力,属基础题..16、【解析】试题分析:由题意得,不妨设棱长为,如图,在底面内的射影为的中心,故,由勾股定理得,过作平面,则为与底面所成角,且,作于中点,所以,所以,所以与底面所成角的正弦值为.考点:直线与平面所成的角.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)..(2),或.【解析】试题分析:(1)由三角函数图象与轴交于点可得,则.由最小正周期公式可得.(2)由题意结合中点坐标公式可得点的坐标为.代入三角函数式可得,结合角的范围求解三角方程可得,或.试题解析:(1)将代入函数中,得,因为,所以.由已知,且,得.(2)因为点是的中点,,所以点的坐标为.又因为点在的图象上,且,所以,且,从而得,或,即,或.18、(1)an=4n-3【解析】

(1)根据条件列方程组,求出首项和公差即可得出通项公式;(2)利用裂项相消法求和.【详解】(1)设等差数列an的公差为d(d≠0)a1解得d=4或d=0(舍去),a1∴a(2)∵b∴S=1【点睛】本题考查了等差数列的通项公式,考查了利用裂项相消进行数列求和的方法,属于基础题.19、(1)(2)【解析】

(1)首先求出包含的基本事件个数,由,由向量的坐标运算可得,列出满足条件的基本事件个数,根据古典概型概率计算公式即可求解.(2)根据题意全部基本事件的结果为,满足的基本事件的结果为,利用几何概型概率计算公式即可求解.【详解】(1),的所有取值共有个基本事件.由,得,满足包含的基本事件为,,,,,共种情形,故.(2)若,在上取值,则全部基本事件的结果为,满足的基本事件的结果为.画出图形如图,正方形的面积为,阴影部分的面积为,故满足的概率为.【点睛】本题考查了古典概型概率计算公式、几何概型概率计算公式,属于基础题.20、⑴(2)【解析】

⑴由正弦定理及,得,因为,所以;⑵由余弦定理,解得【详解】⑴由正弦定理得,由已知得,,因为,所以⑵由余弦定理,得即,解得或,负值舍去,所以【点睛】解三角形问题,常要求正确选择正弦定理或余弦定理对三角形中的边、角进行转换,再进行求解,同时注意三角形当中的边角关系,如内角和为180度等21、(Ⅰ)0.008,B的成绩好些(Ⅱ)派A去参赛较合适【解析】

(Ⅰ)利用方差的公式,求得S

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论