湖北省黄冈市浠水实验高中2026届数学高一下期末考试试题含解析_第1页
湖北省黄冈市浠水实验高中2026届数学高一下期末考试试题含解析_第2页
湖北省黄冈市浠水实验高中2026届数学高一下期末考试试题含解析_第3页
湖北省黄冈市浠水实验高中2026届数学高一下期末考试试题含解析_第4页
湖北省黄冈市浠水实验高中2026届数学高一下期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省黄冈市浠水实验高中2026届数学高一下期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,正方体ABCD-A1B1C1D1的棱长为2,E是棱AB的中点,F是侧面AA1D1D内一点,若EF∥平面BB1D1D,则EF长度的范围为()A. B. C. D.2.已知各项均不为零的数列,定义向量,,.下列命题中真命题是()A.若对任意的,都有成立,则数列是等差数列B.若对任意的,都有成立,则数列是等比数列C.若对任意的,都有成立,则数列是等差数列D.若对任意的,都有成立,则数列是等比数列3.在中,若则等于()A. B. C. D.4.已知向量,的夹角为,且,,则与的夹角等于A. B. C. D.5.在正方体中,直线与直线所成角是()A. B. C. D.6.已知向量,满足,在上的投影(正射影的数量)为-2,则的最小值为()A. B.10 C. D.87.过点且与圆相切的直线方程为()A. B.或C.或 D.或8.如图,长方体中,,,,分别过,的两个平行截面将长方体分成三个部分,其体积分别记为,,,.若,则截面的面积为()A. B. C. D.9.已知向量,与的夹角为,则()A.3 B.2 C. D.110.函数的最小正周期是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知四棱锥的底面是边长为的正方形,侧棱长均为,若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的侧面积为________.12.已知向量,且,则___________.13.已知,,那么的值是________.14.设数列()是等差数列,若和是方程的两根,则数列的前2019项的和________15.若,则____________.16.在中,为边中点,且,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数,其中.(1)在实数集上用分段函数形式写出函数的解析式;(2)求函数的最小值.18.在直角坐标系中,,,点在直线上.(1)若三点共线,求点的坐标;(2)若,求点的坐标.19.某城市的华为手机专卖店对该市市民使用华为手机的情况进行调查.在使用华为手机的用户中,随机抽取100名,按年龄(单位:岁)进行统计的频率分布直方图如图:(1)根据频率分布直方图,分别求出样本的平均数(同一组数据用该区间的中点值作代表)和中位数的估计值(均精确到个位);(2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加华为手机宣传活动,再从这20人中年龄在和的人群里,随机选取2人各赠送一部华为手机,求这2名市民年龄都在内的概率.20.在中,内角的对边分别为,已知.(1)证明:;(2)若,求边上的高.21.如图,在四棱锥P−ABCD中,AB//CD,且.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,,求二面角A−PB−C的余弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

过作,交于点,交于,根据线面垂直关系和勾股定理可知;由平面可证得面面平行关系,利用面面平行性质可证得为中点,从而得到最小值为重合,最大值为重合,计算可得结果.【详解】过作,交于点,交于,则底面平面,平面,平面平面,又平面平面又平面平面,平面为中点为中点,则为中点即在线段上,,则线段长度的取值范围为:本题正确选项:【点睛】本题考查立体几何中线段长度取值范围的求解,关键是能够确定动点的具体位置,从而找到临界状态;本题涉及到立体几何中线面平行的性质、面面平行的判定与性质等定理的应用.2、A【解析】

根据向量平行的坐标表示,得到,利用累乘法,求得,从而可作出判定,得到答案.【详解】由题意知,向量,,,当时,可得,即,所以,所以数列表示首项为,公差为的等差数列.当,可得,即,所以,所以数列既不是等差数列,也不是等比数列.故选A.【点睛】本题主要考查了向量的平行关系的坐标表示,等差数列的定义,以及“累乘法”求解通项公式的应用,着重考查了推理与运算能力,属于基础题.3、D【解析】

由正弦定理,求得,再由,且,即可求解,得到答案.【详解】由题意,在中,由正弦定理可得,即,又由,且,所以或,故选D.【点睛】本题主要考查了正弦定理的应用,其中解答中熟记三角形的正弦定理,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.4、C【解析】

根据条件即可求出,从而可求出,,,然后可设与的夹角为,从而可求出,根据向量夹角的范围即可求出夹角.【详解】,;,,;设与的夹角为,则;又,,故选.【点睛】本题主要考查向量数量积的定义运用,向量的模的求法,以及利用数量积求向量夹角.5、B【解析】

直线与直线所成角为,为等边三角形,得到答案.【详解】如图所示:连接易知:直线与直线所成角为为等边三角形,夹角为故答案选B【点睛】本题考查了异面直线夹角,意在考查学生的空间想象能力.6、D【解析】

在上的投影(正射影的数量)为可知,可求出,求的最小值即可得出结果.【详解】因为在上的投影(正射影的数量)为,所以,即,而,所以,因为所以,即,故选D.【点睛】本题主要考查了向量在向量上的正射影,向量的数量积,属于难题.7、C【解析】

分别考虑斜率存在和不存在两种情况得到答案.【详解】如图所示:当斜率不存在时:当斜率存在时:设故答案选C【点睛】本题考查了圆的切线问题,忽略掉斜率不存在是容易发生的错误.8、B【解析】

解:由题意知,截面是一个矩形,并且长方体的体积V=6×4×3=72,∵V1:V2:V3=1:4:1,∴V1=VAEA1-DFD1=×72=12,则12=×AE×A1A×AD,解得AE=2,在直角△AEA1中,EA1=故截面的面积是EF×EA1=49、C【解析】

由向量的模公式以及数量积公式,即可得到本题答案.【详解】因为向量,与的夹角为,所以.故选:C【点睛】本题主要考查平面向量的模的公式以及数量积公式.10、A【解析】

作出函数的图象可得出该函数的最小正周期。【详解】作出函数的图象如下图所示,由图象可知,函数的最小正周期为,故选:A。【点睛】本题考查三角函数周期的求解,一般而言,三角函数最小正周期的求解方法有如下几种:(1)定义法:即;(2)公式法:当时,函数或的最小正周期为,函数最小正周期为;(3)图象法。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

先求出四棱锥的底面对角线的长度,结合勾股定理可求出四棱锥的高,然后由圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,可知四条侧棱的中点连线为正方形,其对角线为圆柱底面的直径,圆柱的高为四棱锥的高的一半,分别求解可求出圆柱的侧面积.【详解】由题可知,四棱锥是正四棱锥,四棱锥的四条侧棱的中点连线为正方形,边长为,该正方形对角线的长为1,则圆柱的底面半径为,四棱锥的底面是边长为的正方形,其对角线长为2,则四棱锥的高为,故圆柱的高为1,所以圆柱的侧面积为.【点睛】本题主要考查了空间几何体的结构特征,考查了学生的空间想象能力与计算求解能力,属于中档题.12、【解析】

把平方,将代入,化简即可得结果.【详解】因为,所以,,故答案为.【点睛】本题主要考查向量的模及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).13、【解析】

首先根据题中条件求出角,然后代入即可.【详解】由题知,,所以,故.故答案为:.【点睛】本题考查了特殊角的三角函数值,属于基础题.14、2019【解析】

根据二次方程根与系数的关系得出,再利用等差数列下标和的性质得到,然后利用等差数列求和公式可得出答案.【详解】由二次方程根与系数的关系可得,由等差数列的性质得出,因此,等差数列的前项的和为,故答案为.【点睛】本题考查等差数列的性质与等差数列求和公式的应用,涉及二次方程根与系数的关系,解题的关键在于等差数列性质的应用,属于中等题.15、【解析】故答案为.16、0【解析】

根据向量,,取模平方相减得到答案.【详解】两个等式平方相减得到:故答案为0【点睛】本题考查了向量的加减,模长,意在考查学生的计算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)令,解得的范围,再结合的意义分段函数形式写出函数的解析式即可.(2)利用的奇偶性,只需要考虑的情形,只需分两种情形讨论:,当时,分别求出的最小值即可.【详解】(1),令,得,解得或,(2)因为是偶函数,所以只需考虑的情形,当时,,当时,当时,,当时,,时,.【点睛】本题主要考查函数单调性的应用、函数解析式的求法、不等式的解法等基本知识,考查了运算求解能力,考查分类讨论思想、化归与转化思想,属于基础题.18、(1);(2).【解析】

(1)三点共线,则有与共线,由向量共线的坐标运算可得点坐标;(2),则,由向量数量积的坐标运算可得【详解】设,则,(1)因为三点共线,所以与共线,所以,,点的坐标为.(2)因为,所以,即,,点的坐标为.【点睛】本题考查向量共线和向量垂直的坐标运算,属于基础题.19、(1)见解析(2)【解析】分析:(1)直接利用频率分布直方图的平均值和中位数公式求解.(2)利用古典概型求这2名市民年龄都在内的概率.详解:(Ⅰ)平均值的估计值:中位数的估计值:因为,所以中位数位于区间年龄段中,设中位数为,所以,.(Ⅱ)用分层抽样的方法,抽取的20人,应有4人位于年龄段内,记为,2人位于年龄段内,记为.现从这6人中随机抽取2人,设基本事件空间为,则设2名市民年龄都在为事件A,则,所以.点睛:(1)本题主要考查频率分布直方图,考查平均值和中位数的计算和古典概型,意在考查学生对这些基础知识的掌握能力和基本的运算能力.(2)先计算出每个小矩形的面积,通过解方程找到左边面积为0.5的点P,点P对应的数就是中位数.一般利用平均数的公式计算.其中代表第个矩形的横边的中点对应的数,代表第个矩形的面积.20、(1)见解析(2)【解析】分析:(1)由,结合正弦定理可得,即;(2)由,结合余弦定理可得,从而可求得边上的高.详解:(1)证明:因为,所以,所以,故.(2)解:因为,所以.又,所以,解得,所以,所以边上的高为.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.21、(1)见解析;(2).【解析】

(1)由已知,得AB⊥AP,CD⊥PD.由于AB//CD,故AB⊥PD,从而AB⊥平面PAD.又AB平面PAB,所以平面PAB⊥平面PAD.(2)在平面内作,垂足为,由(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论