2026届江苏省常州市戚墅堰高级中学高一数学第二学期期末质量跟踪监视试题含解析_第1页
2026届江苏省常州市戚墅堰高级中学高一数学第二学期期末质量跟踪监视试题含解析_第2页
2026届江苏省常州市戚墅堰高级中学高一数学第二学期期末质量跟踪监视试题含解析_第3页
2026届江苏省常州市戚墅堰高级中学高一数学第二学期期末质量跟踪监视试题含解析_第4页
2026届江苏省常州市戚墅堰高级中学高一数学第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届江苏省常州市戚墅堰高级中学高一数学第二学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知a、b是两条不同的直线,、是两个不同的平面,若,,,则下列三个结论:①、②、③.其中正确的个数为()A.0 B.1 C.2 D.32.利用随机模拟方法可估计无理数π的数值,为此设计右图所示的程序框图,其中rand()表示产生区间(0,1)上的随机数,P是s与n的比值,执行此程序框图,输出结果P的值趋近于()A.π B.π4 C.π23.已知向量,则与夹角的大小为()A. B. C. D.4.在区间内任取一个实数,则此数大于2的概率为()A. B. C. D.5.已知圆,过点作圆的最长弦和最短弦,则直线,的斜率之和为A. B. C.1 D.6.若集合,,则(

)A. B. C. D.7.已知集合A={x|x2﹣x﹣2<0},B={x|≥﹣1},则A∪B=()A.(﹣1,2) B.(﹣1,2] C.(0,1) D.(0,2)8.已知向量,,,的夹角为45°,若,则()A. B. C.2 D.39.已知向量,,若,则锐角α为()A.45° B.60° C.75° D.30°10.若圆的圆心在第一象限,则直线一定不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,,若向量与垂直,则__________.12.若,且,则的最小值是______.13.已知等差数列则.14.计算:______.15.已知函数,数列的通项公式是,当取得最小值时,_______________.16.函数的定义域为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设a为实数,函数,(1)若,求不等式的解集;(2)是否存在实数a,使得函数在区间上既有最大值又有最小值?若存在,求出实数a的取值范围;若不存在,请说明理由;(3)写出函数在R上的零点个数(不必写出过程).18.已知向量(1)求函数的单调递减区间;(2)在中,,若,求的周长.19.单调递增的等差数列满足,且成等比数列.(1)求数列的通项公式;(2)设,求数列的前项和.20.已知三棱柱中,三个侧面均为矩形,底面为等腰直角三角形,,点为棱的中点,点在棱上运动.(1)求证;(2)当点运动到某一位置时,恰好使二面角的平面角的余弦值为,求点到平面的距离;(3)在(2)的条件下,试确定线段上是否存在一点,使得平面?若存在,确定其位置;若不存在,说明理由.21.动直线m:3x+8y+3λx+λy+21=0(λ∈R)过定点M,直线l过点M且倾斜角α满足cosα,数列{an}的前n项和为Sn,点P(Sn,an+1)在直线l上.(1)求数列{an}的通项公式an;(2)设bn,数列{bn}的前n项和Tn,如果对任意n∈N*,不等式成立,求整数k的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据题意,,,,则有,因此,,不难判断.【详解】因为,,,则有,所以,,所以①正确,②不正确,③正确,则其中正确命题的个数为2.故选C【点睛】本题考查空间中直线与平面之间的位置关系,考查空间推理能力,属于简单题.2、B【解析】

根据程序框图可知由几何概型计算出x,y任取(0,1)上的数时落在x2【详解】解:根据程序框图可知P为频率,它趋近于在边长为1的正方形中随机取一点落在扇形内的的概率π×故选:B【点睛】本题考查的知识点是程序框图,根据已知中的程序框图分析出程序的功能,并将问题转化为几何概型问题是解答本题的关键,属于基础题.3、D【解析】

。分别求出,,,利用即可得出答案.【详解】设与的夹角为故选:D【点睛】本题主要考查了求向量的夹角,属于基础题.4、D【解析】

根据几何概型长度型直接求解即可.【详解】根据几何概型可知,所求概率为:本题正确选项:【点睛】本题考查几何概型概率问题的求解,属于基础题.5、D【解析】

根据圆的几何性质可得最长弦是直径,最短弦和直径垂直,故可计算斜率,并求和.【详解】由题意得,直线经过点和圆的圆心弦长最长,则直线的斜率为,由题意可得直线与直线互相垂直时弦长最短,则直线的斜率为,故直线,的斜率之和为.【点睛】本题考查了两直线垂直的斜率关系,以及圆内部的几何性质,属于简单题型.6、B【解析】

通过集合B中,用列举法表示出集合B,再利用交集的定义求出.【详解】由题意,集合,所以故答案为:B【点睛】本题主要考查了集合的表示方法,以及集合的运算,其中熟记集合的表示方法,以及准确利用集合的运算是解答的关键,着重考查了推理与运算能力,属于基础题.7、B【解析】

先分别求出集合A和B,由此能求出A∪B.【详解】∵集合A={x|x2﹣x﹣2<0}={x|﹣1<x<2},B={x|≥﹣1}={x|0<x≤2},∴A∪B={x|﹣1<x≤2}=(﹣1,2].故选B.【点睛】本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,是基础题.8、C【解析】

利用向量乘法公式得到答案.【详解】向量,,,的夹角为45°故答案选C【点睛】本题考查了向量的运算,意在考查学生的计算能力.9、D【解析】

根据向量的平行的坐标表示,列出等式,即可求出.【详解】因为,所以,又为锐角,因此,即,故选D.【点睛】本题主要考查向量平行的坐标表示.10、A【解析】

由圆心位置确定,的正负,再结合一次函数图像即可判断出结果.【详解】因为圆的圆心坐标为,由圆心在第一象限可得,所以直线的斜率,轴上的截距为,所以直线不过第一象限.【点睛】本题主要考查一次函数的图像,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】,所以,解得.12、8【解析】

利用的代换,将写成,然后根据基本不等式求解最小值.【详解】因为(即取等号),所以最小值为.【点睛】已知,求解()的最小值的处理方法:利用,得到,展开后利用基本不等式求解,注意取等号的条件.13、1【解析】试题分析:根据公式,,将代入,计算得n=1.考点:等差数列的通项公式.14、【解析】

在分式的分子和分母中同时除以,然后利用常见的数列极限可计算出所求极限值.【详解】.故答案为:.【点睛】本题考查数列极限的计算,熟悉一些常见数列极限是解题的关键,考查计算能力,属于基础题.15、110【解析】

要使取得最小值,可令,即,对的值进行粗略估算即可得到答案.【详解】由题知:①.要使①式取得最小值,可令①式等于.即,.又因为,,则当时,,,①式.则当时,,,①式.当或时,①式的值会变大,所以时,取得最小值.故答案为:【点睛】本题主要考查数列的函数特征,同时考查了指数函数和对数函数的性质,核心素养是考查学生灵活运用知识解决问题的能力,属于难题.16、【解析】

根据对数函数的真数大于0,列出不等式求解集即可.【详解】对数函数f(x)=log2(x﹣1)中,x﹣1>0,解得x>1;∴f(x)的定义域为(1,+∞).故答案为:(1,+∞).【点睛】本题考查了求对数函数的定义域问题,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)不存在这样的实数,理由见解析(3)见解析【解析】

(1)代入的值,通过讨论的范围,求出不等式的解集即可;(2)通过讨论的范围,求出函数的单调区间,再求出函数的最值,得到关于的不等式组,解出并判断即可;(3)通过讨论的范围,判断函数的零点个数即可【详解】(1)当时,,则当时,,解得或,故;当时,,解集为,综上,的解集为(2),显然,,①当时,则在上单调递增,在上单调递减,在上单调递增,因为函数在上既有最大值又有最小值,所以,,则,即,解得,故不存在这样的实数;②当时,则在上单调递增,在上单调递减,在上单调递增,因为函数在上既有最大值又有最小值,故,,则,即,解得,故不存在这样的实数;③当时,则为上的递增函数,故函数在上不存在最大值和最小值,综上,不存在这样的实数(3)当或时,函数的零点个数为1;当或时,函数的零点个数为2;当时,函数的零点个数为3【点睛】本题考查分段函数的应用,考查利用函数的单调性求最值,考查函数的零点个数,着重考查分类讨论思想18、(1);(2)【解析】

(1)根据向量的数量积公式、二倍角公式及辅助角公式将化简为,然后利用三角函数的性质,即可求得的单调减区间;(2)由(1)及可求得,由可得,再结合余弦定理即可求得,进而可得的周长.【详解】解:(1)所以函数的单调递减区间为:(2),,又因在中,,,设的三个内角所对的边分别为,又,且,,则,所以的周长为.【点睛】本题考查平面向量的数量积公式,三角函数的二倍角公式、辅助角公式和三角函数的性质,以及利用正弦定理、余弦定理解三角形,考查理解辨析能力及求解运算能力,属于中档题.19、(1);(2).【解析】

(1)设等差数列的公差为,,运用等差数列的通项公式和等比数列中项性质,解方程可得公差,进而得到所求通项公式;(2)求得,再用裂项相消法即可得出结论.【详解】解:(1)设等差数列的公差为,,可得,,由,,成等比数列,,解得或舍去),则;(2),∴.【点睛】本题主要考查等差数列的通项公式和等比数列中项性质,考查数列的裂项相消法求和,考查运算能力,属于中档题.20、(1)见解析;(2);(3)存在,为中点.【解析】

(1)以CB为x轴,CA为y轴,CC1为z轴,C为原点建立坐标系,设E(m,0,2),要证A1C⊥AE,可证,只需证明,利用向量的数量积运算即可证明;(2)分别求出平面EA1D、平面A1DB的一个法向量,由两法向量夹角余弦值的绝对值等于,解得m值,由此可得答案;(3)在(2)的条件下,设F(x,y,0),可知与平面A1DB的一个法向量平行,由此可求出点F坐标,进而求出||,即得答案.【详解】(1)以CB为x轴,CA为y轴,CC1为z轴,C为原点建立坐标系,设E(m,0,2),C(0,0,0),A(0,2,0),A1(0,2,2),D(0,0,1),B(2,0,0),=(0,﹣2,﹣2),=(m,﹣2,2),因为=0+(﹣2)×(﹣2)﹣2×2=0,所以⊥,即A1C⊥AE;(2)=(m,0,1),=(0,2,1),设=(x,y,z)为平面EA1D的一个法向量,则即,取=(2,m,﹣2m),=(2,0,﹣1),设=(x,y,z)为平面A1DB的一个法向量,则,即,取=(1,﹣1,2),由二面角E﹣A1D﹣B的平面角的余弦值为,得||=,解得m=1,平面A1DB的一个法向量=(1,﹣1,2),根据点E到面的距离为:.(3)由(2)知E(1,0,2),且=(1,﹣1,2)为平面A1DB的一个法向量,设F(x,y,0),则=(x﹣1,y,﹣2),且,所以x﹣1=﹣1,y=1,解得x=0,y=1,所以=(﹣1,1,﹣2),==,故EF的长度为,此时点F(0,1,0).存在F点为AC中点.【点睛】本题考查重点考查直线与平面垂直的性质、二面角的平面角及其求法、空间点、线、面间距离计算,考查学生空间想象能力、推理论证能力.21、(1)an=6•(﹣1)n﹣1;(1)最大值为1.【解析】

(1)由直线恒过定点可得M(1,﹣3),求得直线l的方程,可得an+6=1Sn,运用数列的递推式和等比数列的通项公式,可得所求;(1)bn•(﹣1)n﹣1,讨论n为偶数或奇数,可得Tn,再由不等式恒成立问题解法,可得所求k的范围,可得最大值.【详解】(1)3x+8y+3λx+λy+11=0即为(3x+8y+11)+λ(3x+y)=0,由3x+y=0且3x+8y+11=0,解得x=1,y=﹣3,可得M(1,﹣3),可得直线l的斜率为tanα1,即直线l的方程为y+3=1(x﹣1),即有y=1x﹣5,即有an+1=1Sn﹣5,即an+6=1Sn,当n=1时,可得a1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论