2026届河南省八市·学评高一下数学期末学业水平测试试题含解析_第1页
2026届河南省八市·学评高一下数学期末学业水平测试试题含解析_第2页
2026届河南省八市·学评高一下数学期末学业水平测试试题含解析_第3页
2026届河南省八市·学评高一下数学期末学业水平测试试题含解析_第4页
2026届河南省八市·学评高一下数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届河南省八市·学评高一下数学期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,向量,,的起点与终点均在正方形网格的格点上,若,则()A. B.3 C.1 D.2.若点共线,则的值为()A. B. C. D.3.阅读程序框图,运行相应的程序,输出的结果为()A. B. C. D.4.已知锐角中,角所对的边分别为,若,则的取值范围是()A. B. C. D.5.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是()A. B. C. D.6.已知,则比多了几项()A.1 B. C. D.7.在中任取一实数作为x,则使得不等式成立的概率为()A. B. C. D.8.如图是一圆锥的三视图,正视图和侧视图都是顶角为120°的等腰三角形,若过该圆锥顶点S的截面三角形面积的最大值为2,则该圆锥的侧面积为A. B. C. D.49.在等差数列{an}中,已知a1=2A.50 B.52 C.54 D.5610.若,,则方程有实数根的概率为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,函数的最小值为__________.12.有下列四个说法:①已知向量,,若与的夹角为钝角,则;②先将函数的图象上各点纵坐标不变,横坐标缩小为原来的后,再将所得函数图象整体向左平移个单位,可得函数的图象;③函数有三个零点;④函数在上单调递减,在上单调递增.其中正确的是__________.(填上所有正确说法的序号)13.在平面直角坐标系xOy中,双曲线的右支与焦点为F的抛物线交于A,B两点若,则该双曲线的渐近线方程为________.14.下列命题:①函数的最小正周期是;②在直角坐标系中,点,将向量绕点逆时针旋转得到向量,则点的坐标是;③在同一直角坐标系中,函数的图象和函数的图象有两个公共点;④函数在上是增函数.其中,正确的命题是________(填正确命题的序号).15.在锐角△中,,,,则________16.如图,为测量山高,选择和另一座山的山顶为测量观测点,从点测得的仰角,点的仰角以及;从点测得;已知山高,则山高__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.知两条直线l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8,求当m为何值时,l1与l2:(1)垂直;(2)平行,并求出两平行线间的距离.18.如图,已知四棱锥,侧面是正三角形,底面为边长2的菱形,,.(1)设平面平面,求证:;(2)求多面体的体积;(3)求二面角的余弦值.19.在中,D是线段AB上靠近B的一个三等分点,E是线段AC上靠近A的一个四等分点,,设,.(1)用,表示;(2)设G是线段BC上一点,且使,求的值.20.在中,为上的点,为上的点,且.(1)求的长;(2)若,求的余弦值.21.在中,已知,,且AC边的中点M在y轴上,BC边的中点N在x轴上,求:顶点C的坐标;

直线MN的方程.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据图像,将表示成的线性和形式,由此求得的值,进而求得的值.【详解】根据图像可知,所以,故选A.【点睛】本小题主要考查平面向量的线性运算,考查平面向量基本定理,考查数形结合的数学思想方法,属于基础题.2、A【解析】

通过三点共线转化为向量共线,即可得到答案.【详解】由题意,可知,又,点共线,则,即,所以,故选A.【点睛】本题主要考查三点共线的条件,难度较小.3、D【解析】

按照程序框图运行程序,直到时输出结果即可.【详解】按照程序框图运行程序输入,,则,满足,,则,满足,,则,满足,,则,满足,,则,满足,,则,不满足,输出故选:【点睛】本题考查根据程序框图计算输出结果的问题,属于基础题.4、B【解析】

利用余弦定理化简后可得,再利用正弦定理把边角关系化为角的三角函数的关系式,从而得到,因此,结合的范围可得所求的取值范围.【详解】,因为为锐角三角形,所以,,,故,选B.【点睛】在解三角形中,如果题设条件是关于边的二次形式,我们可以利用余弦定理化简该条件,如果题设条件是关于边的齐次式或是关于内角正弦的齐次式,那么我们可以利用正弦定理化简该条件,如果题设条件是边和角的混合关系式,那么我们也可把这种关系式转化为角的关系式或边的关系式.5、C【解析】

本题首先可以根据直角三角形的三边长求出三角形的内切圆半径,然后分别计算出内切圆和三角形的面积,最后通过几何概型的概率计算公式即可得出答案.【详解】如图所示,直角三角形的斜边长为,设内切圆的半径为,则,解得.所以内切圆的面积为,所以豆子落在内切圆外部的概率,故选C.【点睛】本题主要考查“面积型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.6、D【解析】

由写出,比较两个等式得多了几项.【详解】由题意,则,那么:,又比多了项.故选:D.【点睛】本题考查对函数的理解和带值计算问题,属于基础题.7、C【解析】

先求解不等式,再利用长度型的几何概型概率公式求解即可【详解】由题,因为,解得,则,故选:C【点睛】本题考查长度型的几何概型,考查解对数不等式8、B【解析】

过该圆锥顶点S的截面三角形面积最大是直角三角形,根据面积为2求出圆锥的母线长,再根据正视图求圆锥底面圆的半径,最后根据扇形面积公式求圆锥的侧面积.【详解】过该圆锥顶点S的截面三角形面积最直角三角形,设圆锥的母线长和底面圆的半径分别为,则,即,又,所以圆锥的侧面积;故选B.【点睛】本题考查三视图及圆锥有关计算,此题主要难点在于判断何时截面三角形面积最大,要结合三角形的面积公式,当,即截面是等腰直角三角时面积最大.9、C【解析】

利用等差数列通项公式求得基本量d,根据等差数列性质可得a4【详解】设等差数列an公差为则a2+∴本题正确选项:C【点睛】本题考查等差数列基本量的求解问题,关键是能够根据等差数列通项公式构造方程求得公差,属于基础题.10、B【解析】方程有实数根,则:,即:,则:,如图所示,由几何概型计算公式可得,满足题意的概率值为:.本题选择B选项.二、填空题:本大题共6小题,每小题5分,共30分。11、5【解析】

变形后利用基本不等式可得最小值.【详解】∵,∴4x-5>0,∴当且仅当时,取等号,即时,有最小值5【点睛】本题考查利用基本不等式求最值,凑出可利用基本不等式的形式是解决问题的关键,使用基本不等式时要注意“一正二定三相等”的法则.12、②③④【解析】

根据向量,函数零点,函数的导数,以及三角函数有关知识,对各个命题逐个判断即可.【详解】对①,若与的夹角为钝角,则且与不共线,即,解得且,所以①错误;对②,先将函数的图象上各点纵坐标不变,横坐标缩小为原来的后,得函数的图象,再将图象整体向左平移个单位,可得函数的图象,②正确;对③,函数的零点个数,即解的个数,亦即函数与的图象的交点个数,作出两函数的图象,如图所示:由图可知,③正确;对④,,当时,,当时,,故函数在上单调递减,在上单调递增,④正确.故答案为:②③④.【点睛】本题主要考查命题的真假判断,涉及向量数量积,三角函数图像变换,函数零点个数的求法,以及函数单调性的判断等知识的应用,属于中档题.13、【解析】

根据题意到,联立方程得到,得到答案.【详解】,故.,故,故,故.故双曲线渐近线方程为:.故答案为:.【点睛】本题考查了双曲线的渐近线问题,意在考查学生的计算能力和综合应用能力.14、①②④【解析】

由余弦函数的周期公式可判断①;由任意角的三角函数定义可判断②;由余弦函数和一次函数的图象可判断③;由诱导公式和余弦函数的单调性可判断④.【详解】函数y=cos(﹣2x)即y=cos2x的最小正周期是π,故①正确;在直角坐标系xOy中,点P(a,b),将向量绕点O逆时针旋转90°得到向量,设a=rcosα,b=rsinα,可得rcos(90°+α)=﹣rsinα=﹣b,rsin(90°+α)=rcosα=a,则点Q的坐标是(﹣b,a),故②正确;在同一直角坐标系中,函数y=cosx的图象和函数y=x的图象有一个公共点,故③错误;函数y=sin(x)即y=﹣cosx在[0,π]上是增函数,故④正确.故答案为①②④.【点睛】本题考查余弦函数的图象和性质,主要是周期性和单调性,考查数形结合思想和化简运算能力,属于基础题.15、【解析】

由正弦定理,可得,求得,即可求解,得到答案.【详解】由正弦定理,可得,所以,又由△为锐角三角形,所以.故答案为:.【点睛】本题主要考查了正弦定理得应用,其中解答中熟记正弦定理,准确计算是解答的关键,着重考查了计算能力,属于基础题.16、【解析】在△ABC中,,,在△AMC中,,由正弦定理可得,解得,在Rt△AMN中.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)m(2)m=﹣7,距离为【解析】

(1)由题意利用两条直线垂直的性质,求出m的值.(2)由题意利用两条直线平行的性质,求出m的值,再利用两平行线间的距离公式,求出结果.【详解】(1)两条直线l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8,当(3+m)•2+4(5+m)=0时,即6m+26=0时,l1与l2垂直,即m时,l1与l2垂直.(2)当时,l1与l2平行,即m=﹣7时,l1与l2平行,此时,两条直线l1:﹣2x+2y=13,l2:﹣2x+2y=﹣8,此时,两平行线间的距离为.【点睛】本题主要考查两条直线垂直、平行的性质,两条平行线间的距离公式,属于基础题.18、(1)证明见解析;(2);(3).【解析】

(1)由,证得平面,再由线面平行的性质,即可得到;(2)取中点,连结,推得,,得到平面,再由多面体的体积,结合体积公式,即可求解;(3)由,设的中点为,连结,推得,从而得到就是二面角的平面角,由此可求得二面角的余弦值.【详解】证明:(1)因为平面平面,所以平面,又平面,平面平面,所以;(2)取中点,连结,由得,同理,又因为,所以平面,在中,,所以,所以多面体的体积;(3)由题意知,底面为边长2的菱形,,所以,又,所以,设的中点为,连结,由侧面是正三角形知,,所以,因此就是二面角的平面角,在中,,,由余弦定理得,二面角的余弦值为.【点睛】本题主要考查了线面位置关系的判定,多面体的体积的计算,以及二面角的求解,其中解答中熟记线面位置关系的判定与性质,以及而面积的平面角的定义,准确计算是解答的关键,着重考查了推理与论证能力,属于中档试题.19、(1)(2)【解析】

(1)依题意可得、,再根据,计算可得;(2)设存在实数,使得,由因为,所以存在实数,使,再根据向量相等的充要条件得到方程组,解得即可;【详解】解:(1)因为D是线段AB上靠近B的一个三等分点,所以.因为E是线段AC上靠近A的一个四等分点,所以,所以.因为,所以,则.又,.所以.(2)因为G是线段BC上一点,所以存在实数,使得,则因为,所以存在实数,使,即,整理得解得,故.【点睛】本题考查平面向量的线性运算及平面向量共线定理的应用,属于中档题.20、(1);(2).【解析】试题分析:本题是正弦定理、余弦定理的应用.(1)中,在中可得的大小,运用余弦定理得到关于的一元二次方程,通过解方程可得的值;(2)中先在中由正弦定理得,并根据题意判断出为钝角,根据求出.试题解析:(1)由题意可得,在中,由余弦定理得,所以,整理得,解得:.故的长为.(2)在中,由正弦定理得,即所以,所以.因为点在边上,所以,而,所以只能为钝角,所以,所以.21、(1);(2).【解析】试题分析:(1)边AC的中点M在y轴上,由中点公式得,A,C两点的横坐标和的平均数为1,同理,B,C两点的纵坐标和的平均数为1.构造方程易得C点的坐标.(2)根据C点的坐标,结合中点公式,我们可求出M,N两点的坐标,代入两点式即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论