2026届浙江省湖州市八校联盟高一下数学期末质量检测试题含解析_第1页
2026届浙江省湖州市八校联盟高一下数学期末质量检测试题含解析_第2页
2026届浙江省湖州市八校联盟高一下数学期末质量检测试题含解析_第3页
2026届浙江省湖州市八校联盟高一下数学期末质量检测试题含解析_第4页
2026届浙江省湖州市八校联盟高一下数学期末质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届浙江省湖州市八校联盟高一下数学期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线:与直线:平行,则的值为()A.-1 B.0 C.1 D.-1或12.在等差数列中,若,则()A.8 B.12 C.14 D.103.已知直线(3-2k)x-y-6=0不经过第一象限,则k的取值范围为()A.-∞,32 B.-∞,324.茎叶图记录了甲、乙两组各6名学生在一次数学测试中的成绩(单位:分).已知甲组数据的众数为124,乙组数据的平均数即为甲组数据的中位数,则,的值分别为A. B.C. D.5.对具有线性相关关系的变量,有观测数据,已知它们之间的线性回归方程是,若,则()A. B. C. D.6.函数(,)的部分图象如图所示,则的值分别是()A. B. C. D.7.若,则以下不等式一定成立的是()A. B. C. D.8.方程的解集是()A. B.C. D.9.已知直线a2x+y+2=0与直线bx-(a2+1)y-1=0互相垂直,则|ab|的最小值为A.5 B.4 C.2 D.110.下列函数中同时具有性质:①最小正周期是,②图象关于点对称,③在上为减函数的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,,且与垂直,则的值为______.12.正项等比数列中,,,则公比__________.13.无穷等比数列的首项是某个正整数,公比为单位分数(即形如:的分数,为正整数),若该数列的各项和为3,则________.14.等差数列的前项和为,,,等比数列满足,.(1)求数列,的通项公式;(2)求数列的前15项和.15.如图是一个算法的流程图,则输出的的值是________.16.在上定义运算,则不等式的解集为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列为等差数列,为前项和,,(1)求的通项公式;(2)设,比较与的大小;(3)设函数,,求,和数列的前项和.18.已知是复数,与均为实数,且复数在复平面上对应的点在第一象限,求实数的取值范围.19.已知是同一平面内的三个向量,其中为单位向量.(Ⅰ)若//,求的坐标;(Ⅱ)若与垂直,求与的夹角.20.已知,a,b,c分别为角A,B,C的对边,且,,,求角A的大小.21.已知首项为的等比数列不是递减数列,其前n项和为,且成等差数列.(1)求数列的通项公式;(2)设,求数列的最大项的值与最小项的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

两直线平行表示两直线斜率相等,写出斜率即可算出答案.【详解】显然,,.所以,解得,又时两直线重合,所以.故选C【点睛】此题考查直线平行表示直线斜率相等,属于简单题.2、C【解析】

将,分别用和的形式表示,然后求解出和的值即可表示.【详解】设等差数列的首项为,公差为,则由,,得解得,,所以.故选C.【点睛】本题考查等差数列的基本量的求解,难度较易.已知等差数列的任意两项的值,可通过构建和的方程组求通项公式.3、D【解析】

由题意可得3﹣2k=0或3﹣2k<0,解不等式即可得到所求范围.【详解】直线y=(3﹣2k)x﹣6不经过第一象限,可得3﹣2k=0或3﹣2k<0,解得k≥3则k的取值范围是[32故选:D.【点睛】本题考查直线方程的运用,注意运用直线的斜率为0的情况,考查运算能力,属于基础题.4、A【解析】

根据众数的概念可确定;根据平均数的计算方法可构造方程求得.【详解】甲组数据众数为甲组数据的中位数为乙组数据的平均数为:,解得:本题正确选项:【点睛】本题考查茎叶图中众数、中位数、平均数的求解,属于基础题.5、A【解析】

先求出,再由线性回归直线通过样本中心点即可求出.【详解】由题意,,因为线性回归直线通过样本中心点,将代入可得,所以.故选:A.【点睛】本题主要考查线性回归直线通过样本中心点这一知识点的应用,属常规考题.6、A【解析】

利用,求出,再利用,求出即可【详解】,,,则有,代入得,则有,,,又,故答案选A【点睛】本题考查三角函数的图像问题,依次求出和即可,属于简单题7、C【解析】

利用不等式的运算性质分别判断,正确的进行证明,错误的举出反例.【详解】没有确定正负,时,,所以不选A;当时,,所以不选B;当时,,所以不选D;由,不等式成立.故选C.【点睛】本题考查不等式的运算性质,比较法证明不等式,属于基本题.8、C【解析】

把方程化为,结合正切函数的性质,即可求解方程的解,得到答案.【详解】由题意,方程,可化为,解得,即方程的解集为.故答案为:C.【点睛】本题主要考查了三角函数的基本关系式,以及三角方程的求解,其中解答中熟记正切函数的性质,准确求解是解答的关键,着重考查了推理与运算能力,属于基础题.9、C【解析】试题分析:由已知有,∴,∴.考点:1.两直线垂直的充要条件;2.均值定理的应用.10、C【解析】

根据周期公式排除A选项;根据正弦函数的单调性,排除B选项;将代入函数解析式,排除D选项;根据周期公式,将代入函数解析式,余弦函数的单调性判断C选项正确.【详解】对于A项,,故A错误;对于B项,,,函数在上单调递增,则函数在上单调递增,故B错误;对于C项,;当时,,则其图象关于点对称;当,,函数在区间上单调递减,则函数在区间单调递减,故C正确;对于D项,当时,,故D错误;故选:C【点睛】本题主要考查了求正余弦函数的周期,单调性以及对称性的应用,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据与垂直即可得出,进行数量积的坐标运算即可求出x的值.【详解】;;.故答案为.【点睛】本题考查向量垂直的充要条件,以及向量数量积的坐标运算,属于基础题.12、【解析】

根据题意,由等比数列的性质可得,进而分析可得答案.【详解】根据题意,等比数列中,,则,又由数列是正项的等比数列,所以.【点睛】本题主要考查了等比数列的通项公式的应用,其中解答中熟记等比数列的通项公式,以及注意数列是正项等比数列是解答的关键,着重考查了推理与运算能力,属于基础题.13、【解析】

利用无穷等比数列的各项和,可求得,从而,利用首项是某个自然数,可求,进而可求出.【详解】无穷等比数列各项和为3,,是个自然数,则,.故答案为:【点睛】本题主要考查了等比数列的前项和公式,需熟记公式,属于基础题.14、(1),;(2)125.【解析】

(1)直接利用等差数列,等比数列的公式得到答案.(2),前5项为正,后面为负,再计算数列的前15项和.【详解】解:(1)联立,解得,,故,,联立,解得,故.(2).【点睛】本题考查了等差数列,等比数列,绝对值和,判断数列的正负分界处是解题的关键.15、【解析】由程序框图,得运行过程如下:;,结束循环,即输出的的值是7.16、【解析】

根据定义运算,把化简得,求出其解集即可.【详解】因为,所以,即,得,解得:故答案为:.【点睛】本题考查新定义,以及解一元二次不等式,考查运算的能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3),,【解析】

(1)利用基本元的思想,将已知转化为的形式列方程组,解方程组求得的值,从而求得数列的通项公式.(2)利用裂项求和法求得表达式,判断出,利用对数函数的性质得到,由此得到.(3)首先求得,当时,根据的表达式,求得的表达式.利用分组求和法求得当时的表达式,并根据的值求得的分段表达式.【详解】(1)为等差数列,,得,∴(2)∵,∴,又,∴.(3)由分段函数,可以得到:,,当时,,故当时,,又符合上式所以.【点睛】本小题主要考查等差数列基本量的计算,考查裂项求和法、分组求和法,考查运算求解能力,属于中档题.18、【解析】试题分析:解:设,为实数,.为实数,,则.在第一象限,解得.考点:本题主要考查复数相等的充要条件,复数的代数表示法及其几何意义;复数代数形式的运算,不等式组解法.点评:主要运用复数的基础知识,具有一定综合性,中档题.19、(Ⅰ)或(Ⅱ)【解析】

(Ⅰ)设,根据向量的模和共线向量的条件,列出方程组,即可求解.(Ⅱ)由,根据向量的运算求得,再利用向量的夹角公式,即可求解.【详解】(Ⅰ)设由题则有解得或,.(Ⅱ)由题即,.【点睛】本题主要考查了向量的坐标运算,共线向量的条件及向量的夹角公式的应用,其中解答中熟记向量的基本概念和运算公式,合理准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.20、【解析】

由正弦定理得,即得,再利用余弦定理求解.【详解】因为在三角形ABC中,由正弦定理得.又因为,所以得,由余弦定理得.又三角形内角在.故角A为.【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平.21、(1);(2)最大项的值为,最小项的值为【解析】试题分析:(1)根据成等差数列,利用等比数列通项公式和前项和公式,展开.利用等比数列不是递减数列,可得值,进而求通项.(2)首先根据(1)得到,进而得到,但是等比数列的公比是负数,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论