版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届辽宁省营口高中等重点协作校高一下数学期末学业水平测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线经过点,且倾斜角为,则直线的方程为()A. B.C. D.2.在中,角所对的边分别为.若,,,则等于()A. B. C. D.3.已知函数在上是减函数,则实数的取值范围是()A. B. C. D.4.大衍数列,来源于《乾坤普》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两翼数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,……则此数列的第20项为()A.200 B.180 C.128 D.1625.过点作圆的切线,且直线与平行,则与间的距离是()A. B. C. D.6.设等比数列的前项和为,且,则()A.255 B.375 C.250 D.2007.的值是()A. B. C. D.8.在同一直角坐标系中,函数且的图象可能是()A. B.C. D.9.已知两条平行直线和之间的距离等于,则实数的值为()A. B. C.或 D.10.已知△ABC的项点坐标为A(1,4),B(﹣2,0),C(3,0),则角B的内角平分线所在直线方程为()A.x﹣y+2=0 B.xy+2=0 C.xy+2=0 D.x﹣2y+2=0二、填空题:本大题共6小题,每小题5分,共30分。11.化简:.12.设等比数列的首项为,公比为,所有项和为1,则首项的取值范围是____________.13.在中,为边中点,且,,则______.14.已知数列为等比数列,,,则数列的公比为__________.15.已知x,y满足,则z=2x+y的最大值为_____.16.已知直线与轴、轴相交于两点,点在圆上移动,则面积的最大值和最小值之差为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某工厂新研发了一种产品,该产品每件成本为5元,将该产品按事先拟定的价格进行销售,得到如下数据:单价(元)88.28.48.68.89销量(件)908483807568(1)求销量(件)关于单价(元)的线性回归方程;(2)若单价定为10元,估计销量为多少件;(3)根据销量关于单价的线性回归方程,要使利润最大,应将价格定为多少?参考公式:,.参考数据:,18.已知函数的部分图象如图所示.(1)求函数的解析式,并求出的单调递增区间;(2)若,求的值19.已知在四棱锥中,底面是矩形,平面,,分别是,的中点,与平面所成的角的正切值是;(1)求证:平面;(2)求二面角的正切值.20.在中,角的对边分别为,已知,,.(1)求的值;(2)求和的值.21.在中,内角所对的边分别为.已知,,.(Ⅰ)求和的值;(Ⅱ)求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据倾斜角求得斜率,再根据点斜式写出直线方程,然后化为一般式.【详解】倾斜角为,斜率为,由点斜式得,即.故选C.【点睛】本小题主要考查倾斜角与斜率对应关系,考查直线的点斜式方程和一般式方程,属于基础题.2、B【解析】
利用正弦定理可求.【详解】由正弦定理得.故选B.【点睛】本题考查正弦定理的应用,属于容易题.3、C【解析】
根据复合函数单调性,结合对数型函数的定义域列不等式组,解不等式组求得的取值范围.【详解】由于的底数为,而函数在上是减函数,根据复合函数单调性同增异减可知,结合对数型函数的定义域得,解得.故选:C【点睛】本小题主要考查根据对数型复合函数单调性求参数的取值范围,属于基础题.4、A【解析】
由0、2、4、8、12、18、24、32、40、50…,可得偶数项的通项公式:,即可得出.【详解】由0、2、4、8、12、18、24、32、40、50…,可得偶数项的通项公式:,则此数列第20项=2×102=1.故选:A.【点睛】本题考查了数列递推关系、通项公式、归纳法,属于基础题.5、D【解析】由题意知点在圆C上,圆心坐标为,所以,故切线的斜率为,所以切线方程为,即.因为直线l与直线平行,所以,解得,所以直线的方程是-4x+3y-8=0,即4x-3y+8=0.所以直线与直线l间的距离为.选D.6、A【解析】
由等比数列的性质,仍是等比数列,先由是等比数列求出,再由是等比数列,可得.【详解】由题得,成等比数列,则有,,解得,同理有,,解得.故选:A【点睛】本题考查等比数列前n项和的性质,这道题也可以先由求出数列的首项和公比q,再由前n项和公式直接得。7、A【解析】由于==.故选A.8、D【解析】
本题通过讨论的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当时,函数过定点且单调递减,则函数过定点且单调递增,函数过定点且单调递减,D选项符合;当时,函数过定点且单调递增,则函数过定点且单调递减,函数过定点且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论的不同取值范围,认识函数的单调性.9、C【解析】
利用两条平行线之间的距离公式可求的值.【详解】两条平行线之间的距离为,故或,故选C.【点睛】一般地,平行线和之间的距离为,应用该公式时注意前面的系数要相等.10、D【解析】
由已知可得|AB|=|BC|=5,所以角B的内角平分线所在直线方程为AC的垂直平分线,继而可以求得结果.【详解】由已知可得|AB|=|BC|=5,所以角B的内角平分线所在直线方程为AC的垂直平分线,又线段AC中点坐标为(2,2),则角B的内角平分线所在直线方程为y﹣2,即x﹣2y+2=1.故选:D.【点评】本题考查直线的位置关系,考查垂直的应用,由|AB|=|BC|=5转化为求直线的AC的垂直平分线是关键,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、0【解析】原式=+=-sinα+sinα=0.12、【解析】
由题意可得得且,可得首项的取值范围.【详解】解:由题意得:,,故答案为:.【点睛】本题主要考查等比数列前n项的和、数列极限的运算,属于中档题.13、0【解析】
根据向量,,取模平方相减得到答案.【详解】两个等式平方相减得到:故答案为0【点睛】本题考查了向量的加减,模长,意在考查学生的计算能力.14、【解析】
设等比数列的公比为,由可求出的值.【详解】设等比数列的公比为,则,,因此,数列的公比为,故答案为:.【点睛】本题考查等比数列公比的计算,在等比数列的问题中,通常将数列中的项用首项和公比表示,建立方程组来求解,考查运算求解能力,属于基础题.15、1.【解析】
先根据约束条件画出可行域,再利用几何意义求最值,表示直线在轴上的截距,只需求出可行域直线在轴上的截距最大值即可.【详解】解:,在坐标系中画出图象,三条线的交点分别是,,,在中满足的最大值是点,代入得最大值等于1.故答案为:1.【点睛】本题是考查线性规划问题,本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.16、15【解析】
解:设作出与已知直线平行且与圆相切的直线,
切点分别为,如图所示
则动点C在圆上移动时,若C与点重合时,
△ABC面积达到最小值;而C与点重合时,△ABC面积达到最大值
∵直线3x+4y−12=0与x轴、y轴相交于A(4,0)、B(0,3)两点
可得∴△ABC面积的最大值和最小值之差为
,
其中分别为点、点到直线AB的距离
∵是圆(x−5)2+(y−6)2=9的两条平行切线与圆的切点
∴点、点到直线AB的距离之差等于圆的直径,即
因此△ABC面积的最大值和最小值之差为
故答案为:15三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)当销售单价定为10元时,销量为50件(3)要使利润达到最大,应将价格定位8.75元.【解析】
(1)由均值公式求得均值,,再根据给定公式计算回归系数,得回归方程;(2)在(1)的回归方程中令,求得值即可;(3)由利润可化为的二次函数,由二次函数知识可得利润最大值及此时的值.【详解】(1)由题意可得,,则,从而,故所求回归直线方程为.(2)当时,,故当销售单价定为10元时,销量为50件.(3)由题意可得,,.故要使利润达到最大,应将价格定位8.75元.【点睛】本题考查线性回归直线方程,解题时只要根据已知公式计算,计算能力是正确解答本题的基础.18、(1);递增区间为;(2)【解析】
(1)由图可知其函数的周期满足,从而求得,进而求得,再代入点的坐标可得值,从而求得解析式;解不等式,可得函数的单调增区间;(2)由题意可得,结合,得到,利用平方关系,求得,之后利用差角余弦公式求得结果.【详解】(1)设函数的周期为,由图可知,∴,即,∵,∴,∴,上式中代入,有,得,,即,,又∵,∴,∴,令,解得,即的递增区间为;(2),又,∴,∴;∴.【点睛】该题考查的是有关三角函数的问题,涉及到的知识点有根据图象确定函数解析式,求正弦型函数的单调区间,同角三角函数关系式,利用整体角思维,结合差角正弦公式求三角函数值,属于简单题目.19、(1)见证明;(2)【解析】
(1)取的中点,连接,通过证明四边形是平行四边形,证得,从而证得平面.(2)连接,证得为与平面所成角.根据的值求得的长,作出二面角的平面角并证明,解直角三角形求得二面角的正切值.【详解】(1)证明:取的中点,连接.∵是中点∴又是的中点,∴∴,从而四边形是平行四边形,故又平面,平面,∴(2)∵平面,∴是在平面内的射影为与平面所成角,四边形为矩形,∵,∴,∴过点作交的延长线于,连接,∵平面据三垂线定理知.∴是二面角的平面角易知道为等腰直角三角形,∴∴=∴二面角的正切值为【点睛】本小题主要考查线面平行的证明,考查线面角的定义和应用,考查面面角的正切值的求法,考查逻辑推理能力和空间想象能力,属于中档题.20、(1);(2),【解析】
(1)由,求得,由大边对大角可知均为锐角,利用同角三角函数关系求得,利用两角和差正弦公式求得结果;(2)根据正弦定理得到的关系,代入可求得;利用余弦定理求得.【详解】(1)(2)由正弦定理可得:又,解得:,则由余弦定理可得:【点睛】本题考查解三角形的相关知识,涉及到同角三角函数关系、两角和差正弦公式、大边对大角的关系、正弦定理和余弦定理的应用等知识,属于常考题型.21、(Ⅰ).=.(Ⅱ).【解析】试题分析:利用正弦定理“角转边”得出边的关系,再根据余弦定理求出,进而得到,由转化为,求出,进而求出,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美术音乐教师考核制度
- 变电站人员考核制度
- 酒店收银员考核制度
- 会议部署督办考核制度
- 医院医保积分考核制度
- 2026年起重机司机(限门式起重机)新版试题及答案
- 四川机电职业技术学院单招职业适应性考试测试卷附答案
- 2026届四川省内江铁路中学数学高一下期末监测试题含解析
- 经济法试题库含参考答案
- 疼痛患者护理考试题及答案
- 2025至2030中国电子设备电磁防护解决方案市场调研与商业机会分析报告
- 2026年芜湖职业技术学院高职单招职业适应性测试参考题库带答案解析
- 2026年春节放假安全培训:平安过大年防风险保祥和
- 矛盾纠纷排查调处台账管理规范文件
- 猪肉儿童营养食品创新创业项目商业计划书
- 2025至2030年中国干葡萄酒行业发展研究报告
- 北京市建设工程施工现场安全生产标准化管理图集(2019版)
- DZ/T 0462.8-2023 矿产资源“三率”指标要求 第8部分:硫铁矿、磷、硼、天然碱、钠硝石(正式版)
- 提高治疗前肿瘤TNM评估率工作方案
- 庆阳网约车考试指南
- 你画我猜题目大全
评论
0/150
提交评论