2026年山东省德州市重点中学高三下学期期中考试数学试题(A卷)含解析_第1页
2026年山东省德州市重点中学高三下学期期中考试数学试题(A卷)含解析_第2页
2026年山东省德州市重点中学高三下学期期中考试数学试题(A卷)含解析_第3页
2026年山东省德州市重点中学高三下学期期中考试数学试题(A卷)含解析_第4页
2026年山东省德州市重点中学高三下学期期中考试数学试题(A卷)含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026年山东省德州市重点中学高三下学期期中考试数学试题(A卷)请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知平面向量,满足,,且,则()A.3 B. C. D.52.已知复数和复数,则为A. B. C. D.3.已知向量与的夹角为,,,则()A. B.0 C.0或 D.4.如图所示,为了测量、两座岛屿间的距离,小船从初始位置出发,已知在的北偏西的方向上,在的北偏东的方向上,现在船往东开2百海里到达处,此时测得在的北偏西的方向上,再开回处,由向西开百海里到达处,测得在的北偏东的方向上,则、两座岛屿间的距离为()A.3 B. C.4 D.5.正项等比数列中,,且与的等差中项为4,则的公比是()A.1 B.2 C. D.6.复数的共轭复数记作,已知复数对应复平面上的点,复数:满足.则等于()A. B. C. D.7.已知数列对任意的有成立,若,则等于()A. B. C. D.8.过抛物线()的焦点且倾斜角为的直线交抛物线于两点.,且在第一象限,则()A. B. C. D.9.如图所示,矩形的对角线相交于点,为的中点,若,则等于().A. B. C. D.10.已知,若对任意,关于x的不等式(e为自然对数的底数)至少有2个正整数解,则实数a的取值范围是()A. B. C. D.11.设双曲线的一条渐近线为,且一个焦点与抛物线的焦点相同,则此双曲线的方程为()A. B. C. D.12.甲、乙、丙、丁四位同学利用暑假游玩某风景名胜大峡谷,四人各自去景区的百里绝壁、千丈瀑布、原始森林、远古村寨四大景点中的一个,每个景点去一人.已知:①甲不在远古村寨,也不在百里绝壁;②乙不在原始森林,也不在远古村寨;③“丙在远古村寨”是“甲在原始森林”的充分条件;④丁不在百里绝壁,也不在远古村寨.若以上语句都正确,则游玩千丈瀑布景点的同学是()A.甲 B.乙 C.丙 D.丁二、填空题:本题共4小题,每小题5分,共20分。13.设双曲线的左焦点为,过点且倾斜角为45°的直线与双曲线的两条渐近线顺次交于,两点若,则的离心率为________.14.已知集合,其中,.且,则集合中所有元素的和为_________.15.等腰直角三角形内有一点P,,,,,则面积为______.16.设为抛物线的焦点,为上互相不重合的三点,且、、成等差数列,若线段的垂直平分线与轴交于,则的坐标为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在四棱柱中,底面为正方形,,平面.(1)证明:平面;(2)若,求二面角的余弦值.18.(12分)已知数列为公差不为零的等差数列,是数列的前项和,且、、成等比数列,.设数列的前项和为,且满足.(1)求数列、的通项公式;(2)令,证明:.19.(12分)已知的内角,,的对边分别为,,,.(1)若,证明:.(2)若,,求的面积.20.(12分)已知,函数的最小值为1.(1)证明:.(2)若恒成立,求实数的最大值.21.(12分)某企业生产一种产品,从流水线上随机抽取件产品,统计其质量指标值并绘制频率分布直方图(如图1):规定产品的质量指标值在的为劣质品,在的为优等品,在的为特优品,销售时劣质品每件亏损元,优等品每件盈利元,特优品每件盈利元,以这件产品的质量指标值位于各区间的频率代替产品的质量指标值位于该区间的概率.(1)求每件产品的平均销售利润;(2)该企业主管部门为了解企业年营销费用(单位:万元)对年销售量(单位:万件)的影响,对该企业近年的年营销费用和年销售量,数据做了初步处理,得到的散点图(如图2)及一些统计量的值.表中,,,.根据散点图判断,可以作为年销售量(万件)关于年营销费用(万元)的回归方程.①求关于的回归方程;②用所求的回归方程估计该企业每年应投入多少营销费,才能使得该企业的年收益的预报值达到最大?(收益销售利润营销费用,取)附:对于一组数据,,,,其回归直线的斜率和截距的最小二乘估计分别为,.22.(10分)(某工厂生产零件A,工人甲生产一件零件A,是一等品、二等品、三等品的概率分别为,工人乙生产一件零件A,是一等品、二等品、三等品的概率分别为.己知生产一件一等品、二等品、三等品零件A给工厂带来的效益分别为10元、5元、2元.(1)试根据生产一件零件A给工厂带来的效益的期望值判断甲乙技术的好坏;(2)为鼓励工人提高技术,工厂进行技术大赛,最后甲乙两人进入了决赛.决赛规则是:每一轮比赛,甲乙各生产一件零件A,如果一方生产的零件A品级优干另一方生产的零件,则该方得分1分,另一方得分-1分,如果两人生产的零件A品级一样,则两方都不得分,当一方总分为4分时,比赛结束,该方获胜.Pi+4(i=4,3,2,…,4)表示甲总分为i时,最终甲获胜的概率.①写出P0,P8的值;②求决赛甲获胜的概率.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】

先求出,再利用求出,再求.【详解】解:由,所以,,,故选:B考查向量的数量积及向量模的运算,是基础题.2.C【解析】

利用复数的三角形式的乘法运算法则即可得出.【详解】z1z2=(cos23°+isin23°)•(cos37°+isin37°)=cos60°+isin60°=.故答案为C.熟练掌握复数的三角形式的乘法运算法则是解题的关键,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.3.B【解析】

由数量积的定义表示出向量与的夹角为,再由,代入表达式中即可求出.【详解】由向量与的夹角为,得,所以,又,,,,所以,解得.故选:B本题主要考查向量数量积的运算和向量的模长平方等于向量的平方,考查学生的计算能力,属于基础题.4.B【解析】

先根据角度分析出的大小,然后根据角度关系得到的长度,再根据正弦定理计算出的长度,最后利用余弦定理求解出的长度即可.【详解】由题意可知:,所以,,所以,所以,又因为,所以,所以.故选:B.本题考查解三角形中的角度问题,难度一般.理解方向角的概念以及活用正、余弦定理是解答问题的关键.5.D【解析】

设等比数列的公比为q,,运用等比数列的性质和通项公式,以及等差数列的中项性质,解方程可得公比q.【详解】由题意,正项等比数列中,,可得,即,与的等差中项为4,即,设公比为q,则,则负的舍去,故选D.本题主要考查了等差数列的中项性质和等比数列的通项公式的应用,其中解答中熟记等比数列通项公式,合理利用等比数列的性质是解答的关键,着重考查了方程思想和运算能力,属于基础题.6.A【解析】

根据复数的几何意义得出复数,进而得出,由得出可计算出,由此可计算出.【详解】由于复数对应复平面上的点,,则,,,因此,.故选:A.本题考查复数模的计算,考查了复数的坐标表示、共轭复数以及复数的除法,考查计算能力,属于基础题.7.B【解析】

观察已知条件,对进行化简,运用累加法和裂项法求出结果.【详解】已知,则,所以有,,,,两边同时相加得,又因为,所以.故选:本题考查了求数列某一项的值,运用了累加法和裂项法,遇到形如时就可以采用裂项法进行求和,需要掌握数列中的方法,并能熟练运用对应方法求解.8.C【解析】

作,;,由题意,由二倍角公式即得解.【详解】由题意,,准线:,作,;,设,故,,.故选:C本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.9.A【解析】

由平面向量基本定理,化简得,所以,即可求解,得到答案.【详解】由平面向量基本定理,化简,所以,即,故选A.本题主要考查了平面向量基本定理的应用,其中解答熟记平面向量的基本定理,化简得到是解答的关键,着重考查了运算与求解能力,数基础题.10.B【解析】

构造函数(),求导可得在上单调递增,则,问题转化为,即至少有2个正整数解,构造函数,,通过导数研究单调性,由可知,要使得至少有2个正整数解,只需即可,代入可求得结果.【详解】构造函数(),则(),所以在上单调递增,所以,故问题转化为至少存在两个正整数x,使得成立,设,,则,当时,单调递增;当时,单调递增.,整理得.故选:B.本题考查导数在判断函数单调性中的应用,考查不等式成立问题中求解参数问题,考查学生分析问题的能力和逻辑推理能力,难度较难.11.C【解析】

求得抛物线的焦点坐标,可得双曲线方程的渐近线方程为,由题意可得,又,即,解得,,即可得到所求双曲线的方程.【详解】解:抛物线的焦点为可得双曲线即为的渐近线方程为由题意可得,即又,即解得,.即双曲线的方程为.故选:C本题主要考查了求双曲线的方程,属于中档题.12.D【解析】

根据演绎推理进行判断.【详解】由①②④可知甲乙丁都不在远古村寨,必有丙同学去了远古村寨,由③可知必有甲去了原始森林,由④可知丁去了千丈瀑布,因此游玩千丈瀑布景点的同学是丁.故选:D.本题考查演绎推理,掌握演绎推理的定义是解题基础.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

设直线的方程为,与联立得到A点坐标,由得,,代入可得,即得解.【详解】由题意,直线的方程为,与联立得,,由得,,从而,即,从而离心率.故答案为:本题考查了双曲线的离心率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.14.2889【解析】

先计算集合中最小的数为,最大的数,可得,求和即得解.【详解】当时,集合中最小数;当时,得到集合中最大的数;故答案为:2889本题考查了数列与集合综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.15.【解析】

利用余弦定理计算,然后根据平方关系以及三角形面积公式,可得结果.【详解】设由题可知:由,,,所以化简可得:则或,即或由,所以所以故答案为:本题主要考查余弦定理解三角形,仔细观察,细心计算,属基础题.16.或【解析】

设出三点的坐标,结合等差数列的性质、线段垂直平分线的性质、抛物线的定义进行求解即可.【详解】抛物线的准线方程为:,设,由抛物线的定义可知:,,,因为、、成等差数列,所以有,所以,因为线段的垂直平分线与轴交于,所以,因此有,化简整理得:或.若,由可知;,这与已知矛盾,故舍去;若,所以有,因此.故答案为:或本题考查了抛物线的定义的应用,考查了等差数列的性质,考查了数学运算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)详见解析;(2).【解析】

(1)连接,设,可证得四边形为平行四边形,由此得到,根据线面平行判定定理可证得结论;(2)以为原点建立空间直角坐标系,利用二面角的空间向量求法可求得结果.【详解】(1)连接,设,连接,在四棱柱中,分别为的中点,,四边形为平行四边形,,平面,平面,平面.(2)以为原点,所在直线分别为轴建立空间直角坐标系.设,四边形为正方形,,,则,,,,,,,设为平面的法向量,为平面的法向量,由得:,令,则,,由得:,令,则,,,,,二面角为锐二面角,二面角的余弦值为.本题考查立体几何中线面平行关系的证明、空间向量法求解二面角的问题;关键是能够熟练掌握二面角的向量求法,易错点是求得法向量夹角余弦值后,未根据图形判断二面角为锐二面角还是钝二面角,造成余弦值符号出现错误.18.(1),(2)证明见解析【解析】

(1)利用首项和公差构成方程组,从而求解出的通项公式;由的通项公式求解出的表达式,根据以及,求解出的通项公式;(2)利用错位相减法求解出的前项和,根据不等关系证明即可.【详解】(1)设首项为,公差为.由题意,得,解得,∴,∴,∴当时,∴,.当时,满足上式.∴(2),令数列的前项和为.两式相减得∴恒成立,得证.本题考查等差数列、等比数列的综合应用,难度一般.(1)当用求解的通项公式时,一定要注意验证是否成立;(2)当一个数列符合等差乘以等比的形式,优先考虑采用错位相减法进行求和,同时注意对于错位的理解.19.(1)见解析(2)【解析】

(1)由余弦定理及已知等式得出关系,再由正弦定理可得结论;(2)由余弦定理和已知条件解得,然后由面积公式计算.【详解】解:(1)由余弦定理得,由得到,由正弦定理得.因为,,所以.(2)由题意及余弦定理可知,①由得,即,②联立①②解得,.所以.本题考查利用正余弦定理解三角形.考查三角形面积公式,由已知条件本题主要是应用余弦定理求出边.解题时要注意对条件的分析,确定选用的公式.20.(1)2;(2)【解析】分析:(1)将转化为分段函数,求函数的最小值(2)分离参数,利用基本不等式证明即可.详解:(Ⅰ)证明:,显然在上单调递减,在上单调递增,所以的最小值为,即.(Ⅱ)因为恒成立,所以恒成立,当且仅当时,取得最小值,所以,即实数的最大值为.点睛:本题主要考查含两个绝对值的函数的最值和不等式的应用,第二问恒成立问题分离参数,利用基本不等式求解很关键,属于中档题.21.(1)元.(2)①②万元【解析】

(1)每件产品的销售利润为,由已知可得的取值,由频率分布直方图可得劣质品、优等品、特优品的概率,从而可得的概率分布列,依期望公式计算出期望即为平均销售利润;(2)①对取自然对数,得,令,,,则,这就是线性回归方程,由所给公式数据计算出系数,得线性回归方程,从而可求得;②求出收益,可设换元后用导数求出最大值.【详解】解:(1)设每件产品的销售利润为,则的可能取值为,,.由频率分布直方图可得产品为劣质品、优等品、特优品的概率分别为、、.所以;;.所以的分布列为所以(元).即每件产品的平均销售利润

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论