湖北省崇阳县众望高中2020学年高一数学《§322 函数模型的应用实例》导学案(通用)_第1页
湖北省崇阳县众望高中2020学年高一数学《§322 函数模型的应用实例》导学案(通用)_第2页
湖北省崇阳县众望高中2020学年高一数学《§322 函数模型的应用实例》导学案(通用)_第3页
湖北省崇阳县众望高中2020学年高一数学《§322 函数模型的应用实例》导学案(通用)_第4页
湖北省崇阳县众望高中2020学年高一数学《§322 函数模型的应用实例》导学案(通用)_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、3.2.2 函数模型的应用实例(1)学习目标 1. 通过一些实例,来感受一次函数、二次函数、指数函数、对数函数以及幂函数的广泛应用,体会解决实际问题中建立函数模型的过程,从而进一步加深对这些函数的理解与应用;2. 了解分段函数、指数函数、对数函数等函数模型的应用. 旧知提示(预习教材P101 P104,找出疑惑之处)复习1:某列火车众北京西站开往石家庄,全程253km,火车出发10min开出13km后,以120km/h匀速行驶. 试写出火车行驶的总路程S与匀速行驶的时间t之间的关系式,并求火车离开北京2h内行驶的路程. 复习2:一辆汽车在某段路程中的行驶速度v与时间t的关系如图所示,则该汽车在

2、前3小时内行驶的路程为_km,假设这辆汽车的里程表在汽车行驶这段路程前的读数为2020km,那么在时,汽车里程表读数S与时间t的函数解析式为_. 典型例题 例1 一辆汽车在某段路程中的行驶速度与时间的关系如右图:(1)求图中阴影部分的面积,并说明所求面积的实际意义;(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2020km,试建立汽车行驶这段路程时汽车里程表读数S和时间t的函数解析式.变式:某客运公司定客票的方法是:如果行程不超过,票价是元/,如果超过,则超过的部分按元/定价. 则客运票价元与行程公里之间的函数关系是 .小结:分段函数是生产生活中常用的函数模型,与生活息息相关,解答的关

3、键是分段处理、分类讨论.例2人口问题是当今世界各国普遍关注的问题,认识人口数量的变化规律,可以为有效控制人口增长提供依据. 早在1798年,英国经济学家马尔萨斯(17661834)就提出了自然状态下的人口增长模型:,其中t表示经过的时间,表示时的人口数,r表示人口的年平均增长率. 下表是19501959年我国的人口数据资料:(单位:万人)年份19501951195219531954人数5519656300574825879660266年份19551956195719581959人数61456628286456365994672071)若以各年人口增长率的平均值作为我国这一时期的人口增长率(精确

4、到0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;2)如果按表中的增长趋势,大约在哪一年我国的人口将达到13亿?小结:人口增长率平均值的计算;指数型函数模型.练1. 在中国轻纺城批发市场,季节性服装当季节即将来临时,价格呈上升趋势. 设某服装开始时定价为10元,并且每周(7天)涨价2元,5周后开始保持20元的平稳销售;10周后当季节即将过去时,平均每周降价2元,直到16周末,该服装已不再销售. (1)试建立价格P与周次t之间的函数关系; (2)若此服装每件进价Q与周次t之间的关系式为,试问该服装第几周每件销售利润最大? 课堂小结

5、 1. 分段函数模型;2. 人口增长指数型函数模型; 知识拓展英国物理学家和数学家牛顿(Issac Newton,1643-1727年)曾提出物体在常温环境下温度变化的冷却模型:,其中t表示经过的时间,表示物体的初始温度,表示环境稳定,k为正的常数. 学习评价 1. 按复利计算,若存入银行5万元,年利率2%,3年后支取,则可得利息(单位:万元) 为( ).A. 5(1+0.02) B. 5(1+0.02) C. 5(1+0.02)-5 C. 5(1+0.02)-52. x克a%盐水中,加入y克b%的盐水,浓度变为c%,则x与y的函数关系式为( )A. y=x B. y=x C. y=x D.

6、y=x3. A、B两家电器公司在今年15月份的销售量如下图所示,则B相对于A其市场份额比例比较大的月份是( ).A. 2 月 B. 3月 C. 4月 D. 5 月4. 拟定从甲地到乙地通话m分钟的电话费由f(m)=1.06(0.5m+1)元给出,其中m0,m是大于或等于m的最小整数(职3=3,3.7=4),则从甲地到乙地通话时间为5.5分钟的话费为 元.5. 已知镭经过100年,质量便比原来减少4.24,设质量为1的镭经过年后的剩留量为,则的函数解析式为 . 课外作业1. 经市场调查,某商品在过去100天内的销售量和价格均为时间()的函数,且销售量近似地满足(,);前40天价格为(,),后40

7、天的价格为(,),试写出该种商品的日销售额S与时间的函数关系.2. 某种商品现在定价每年p元,每月卖出n件,因而现在每月售货总金额np元,设定价上涨x成,卖出数量减少y成,售货总金额变成现在的z倍(1)用x和y表示z;(2)若y=x,求使售货总金额保持不变的x值3. 如图,在底边BC=60,高AD=40的ABC中作内接矩形MNPQ,设矩形面积为S,MN=x.(1)写出面积S以x为自变量的函数式,并求其定义域;(2)求矩形面积的最大值及相应的x值.3.2.2 函数模型的应用实例(2) 学习目标 1. 通过一些实例,来感受一次函数、二次函数、指数函数、对数函数以及幂函数的广泛应用,体会解决实际问题

8、中建立函数模型的过程,从而进一步加深对这些函数的理解与应用;2. 初步了解对统计数据表的分析与处理. 课前准备 (预习教材P104 P106,找出疑惑之处)阅读:2020年5月8日,西安交通大学医学院紧急启动“建立非典流行趋势预测与控制策略数学模型”研究项目,马知恩教授率领一批专家昼夜攻关,于5月19日初步完成了第一批成果,并制成了要供决策部门参考的应用软件.这一数学模型利用实际数据拟合参数,并对全国和北京、山西等地的疫情进行了计算仿真,结果指出,将患者及时隔离对于抗击非典至关重要、分析报告说,就全国而论,菲非典病人延迟隔离1天,就医人数将增加1000人左右,推迟两天约增加工能力100人左右;

9、若外界输入1000人中包含一个病人和一个潜伏病人,将增加患病人数100人左右;若4月21日以后,政府示采取隔离措施,则高峰期病人人数将达60万人.这项研究在充分考虑传染病控制中心每日工资发布的数据,建立了非典流行趋势预测动力学模型和优化控制模型,并对非典未来的流行趋势做了分析预测. 典型例题例1某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元. 销售单价与日均销售量的关系如下表所示:销售单价/元6789101112日均销售量/桶480440400360320280240请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?变式:某农家旅游公司有客房300间,每间

10、日房租为20元,每天都客满. 公司欲提高档次,并提高租金,如果每间客房日增加2元,客房出租数就会减少10间. 若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高?小结:找出实际问题中涉及的函数变量根据变量间的关系建立函数模型利用模型解决实际问题小结:二次函数模型。例2 某地区不同身高的未成年男性的体重平均值如下表(身高:cm;体重:kg)身高60708090100110体重6.137.909.9912.1515.0217.50身高120130140150160170体重20.9226.8631.1138.8547.2555.05(1)根据表中提供的数据,建立恰当的函数模型,

11、使它能比较近似地反映这个地区未成年男性体重与身高ykg与身高xcm的函数模型的解析式.(2)若体重超过相同身高男性平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为175cm ,体重78kg的在校男生的体重是否正常?小结:根据收集到的数据的特点,通过建立函数模型,解决实际问题的基本过程:收集数据画散点图选择函数模型求函数模型检验符合实际,用函数模型解释实际问题;不符合实际,则重新选择函数模型,直到符合实际为止.练1. 某同学完成一项任务共花去9个小时,他记录的完成工作量的百分数如下:时间/小时123456789完成百分数1530456060708090100(1)如果用来表示h

12、小时后完成的工作量的百分数,请问是多少?求出的解析式,并画出图象;(2)如果该同学在早晨8:00时开始工作,什么时候他未工作?练2. 有一批影碟(VCD)原销售价为每台800元,在甲、乙两家家电商场均有销售. 甲商场用如下方法促销:买一台单价为780元,买两台单价都为760元,依次类推,每多买一台则所买各台单价均再减少20元,但每台售价不能低于440元;乙商场一律都按原价的75%销售. 某单位需购买一批此类影碟机,问去哪家商场购买花费较低? 课堂小结 1. 有关统计图表的数据分析处理;2. 实际问题中建立函数模型的过程; 知识拓展 根据散点图设想比较接近的可能的函数模型:一次函数模型:二次函数

13、模型:幂函数模型:指数函数模型:(0,) 学习评价 1. 向高为H的圆锥形漏斗内注入化学溶液(漏斗下口暂且关闭),注入溶液量V与溶液深度h的大概图象是( ).2. 某种生物增长的数量与时间的关系如下表:123138下面函数关系式中,能表达这种关系的是( ).A B C D3. 某企业近几年的年产值如下图:则年增长率(增长率=增长值/原产值)最高的是( ).A. 97年 B. 98年 C. 99年 D. 00年4. 某杂志能以每本1.20的价格发行12万本,设定价每提高0.1元,发行量就减少4万本. 则杂志的总销售收入y万元与其定价x的函数关系是 .5. 某新型电子产品2002年投产,计划2020年使其成本降低36. 则平均每年应降低成本 %. 课后作业 1. 某地新建一个服装厂,从今年7月份开始投产,并且前4个月的产量分别为1万件、1.2万件、1.3万件、1.37万件. 由于产品质量好,服装款式新颖,因此前几个月的产品销售情况良好. 为了在推销产品时,接收定单不至于过多或过少,需要估测以后几个月的产量,你能解决这一问题吗?2. 在一个风雨交加的夜里,从某水库闸房到防洪指挥部的电话线路发生了故障,这是一条10km长的线路,如何迅速查出故障所在?如果沿着线路一小段一小段查找

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论