




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、抽象函数的周期问题由一道高考题引出的几点思考2001年高考数学(文科)第22题:设是定义在上的偶函数,其图象关于直线对称。对任意都有。 (I)设求; (II)证明是周期函数。 解析:(I)解略。 (II)证明:依题设关于直线对称 故 又由是偶函数知 将上式中以代换,得 这表明是上的周期函数,且2是它的一个周期 是偶函数的实质是的图象关于直线对称 又的图象关于对称,可得是周期函数 且2是它的一个周期 由此进行一般化推广,我们得到 思考一:设是定义在上的偶函数,其图象关于直线对称,证明是周期函数,且是它的一个周期。 证明:关于直线对称 又由是偶函数知 将上式中以代换,得 是上的周期函数 且是它的一
2、个周期 思考二:设是定义在上的函数,其图象关于直线和对称。证明是周期函数,且是它的一个周期。 证明:关于直线对称 将上式的以代换得 是上的周期函数 且是它的一个周期 若把这道高考题中的“偶函数”换成“奇函数”,还是不是周期函数?经过探索,我们得到 思考三:设是定义在上的奇函数,其图象关于直线对称。证明是周期函数,且4是它的一个周期。, 证明:关于对称 又由是奇函数知 将上式的以代换,得 是上的周期函数 且4是它的一个周期 是奇函数的实质是的图象关于原点(0,0)中心对称,又的图象关于直线对称,可得是周期函数,且4是它的一个周期。由此进行一般化推广,我们得到 思考四:设是定义在上的函数,其图象关
3、于点中心对称,且其图象关于直线对称。证明是周期函数,且是它的一个周期。 证明:关于点对称 关于直线对称 将上式中的以代换,得 是上的周期函数 且是它的一个周期 由上我们发现,定义在上的函数,其图象若有两条对称轴或一个对称中心和一条对称轴,则是上的周期函数。进一步我们想到,定义在上的函数,其图象如果有两个对称中心,那么是否为周期函数呢?经过探索,我们得到 思考五:设是定义在上的函数,其图象关于点和对称。证明是周期函数,且是它的一个周期。 证明:关于对称 将上式中的以代换,得 是周期函数 且是它的一个周期抽象函数解法举例 1 已知函数f(x)= ,且f(x),g(x)定义域都是R,且g(x)0,
4、g(1) =2,g(x) 是增函数. g(m) g(n)= g(m+n)(m、nR) 求证:f(x)是R上的增函数当nN,n3时,f(n)解: 设x1x2 g(x)是R上的增函数, 且g(x)0 g(x1) g(x2) 0 g(x1)+1 g(x2)+1 0 0 - 0 f(x1)- f(x2)=- =1-(1-) =-0 f(x1) f(x2) f(x)是R上的增函数 g(x) 满足g(m) g(n)= g(m+n)(m、nR) 且g(x)0 g(n)= g(1)n=2n 当nN,n3时, 2nn f(n)=1- ,1- 2n(1+1)n1+n+n+12n+1 2n+12n+21-当nN,n
5、3时,f(n)2 设f1(x) f2(x)是(0,+)上的函数,且f1(x)单增,设f(x)= f1(x) +f2(x) ,且对于(0,+)上的任意两相异实数x1, x2恒有| f1(x1) f1(x2)| | f2(x1) f2(x2)|求证:f (x)在(0,+)上单增.设F(x)=x f (x), a0、b0.求证:F(a+b) F(a)+F(b) .证明:设 x1x20f1(x) 在(0,+)上单增f1(x1) f1(x2)0| f1(x1) f1(x2)|= f1(x1) f1(x2)0| f1(x1) f1(x2)| | f2(x1) f2(x2)|f1(x2)- f1(x1)f2
6、(x1) f2(x2) f1(x2)+ f2(x2)f(x1) f(x2)f (x)在(0,+)上单增F(x)=x f (x), a0、b0a+ba0,a+bb0F(a+b)=(a+b)f(a+b)=af(a+b)+bf(a+b)f (x)在(0,+)上单增F(a+b)af(a)+bf(b)= F(a)+F(b)3 函数yf(x)满足f(a+b)f (a)f (b),f(4)16, m、n为互质整数,n0求f()的值f(0) =f(0+0)=f(0) f(0)=f2(0)f(0) =0或1.若f(0)=0则f(4)=16=f(0+4)=f(0) f(4)=0.(矛盾)f(1)=1f(4)=f(
7、2) f(2)=f(1) f(1) f(1) f(1)=16f(1)=f2()0f(1)=2.仿此可证得f(a)0.即y=f(x)是非负函数.f(0)=f(a+(-a)=f(a) f(-a)f(-a)=nN*时f(n)=fn(1)=2n,f(-n)=2-nf(1)=f(+)=fn()=2f()= f()=f()m= 4 定义在(-1,1)上的函数f (x)满足 任意x、y(-1,1)都有f(x)+ f(y)f (),x(-1,0)时,有f(x) 01) 判定f(x)在(-1,1)上的奇偶性,并说明理由2) 判定f(x)在(-1,0)上的单调性,并给出证明3) 求证:f ()f ()f ()或f
8、 ()+f ()+f () f () (nN*) 解:1) 定义在(-1,1)上的函数f (x)满足任意x、y(-1,1)都有f(x)+ f(y)f (),则当y=0时, f(x)+ f(0)f(x) f(0)=0 当-x=y时, f(x)+ f(-x)f(0) f(x)是(-1,1)上的奇函数2) 设0x1x2-1f(x1)-f(x2)= f(x1)+ f(-x2)=0x1x2-1 ,x(-1,0)时,有f(x) 0,1-x1 x20, x1-x200即f(x)在(-1,0)上单调递增.3) f ()=f()=f( )=f()=f()-f()f ()+f ()+f ()=f()-f()+f(
9、)-f()+f()+f()-f()= f() -f()=f()+f(-)x(-1,0)时,有f(x) 0f(-)0, f()+f(-)f()即f ()+f ()+f () f ()1) 5 设 f (x)是定义在R上的偶函数,其图像关于直线x=1对称, 对任意x1、x20,都有f (x1+ x2)f(x1) f(x2), 且f(1)=a0.求f ()及 f ();证明f(x)是周期函数记an=f(2n+), 求(lnan)解: 由f (x)= f ( + )=f(x)20,f(x)a= f(1)=f(2n )=f(+)f ()2解得f ()= f ()=,f ()=. f(x)是偶函数,其图像
10、关于直线x=1对称, f(x)=f(-x),f(1+x)=f(1-x). f(x+2)=f1+(1+x)= f1-(1+x)= f(x)=f(-x).f(x)是以2为周期的周期函数. an=f(2n+)= f ()=(lnan)= =06 设是定义在R上的恒不为零的函数,且对任意x、yR都有f(x+y)f(x)f(y)求f(0),设当xf(0)证明当x0时0f(x)1,设a1=,an=f(n)(nN* ),sn为数列an前n项和,求sn.解:仿前几例,略。anf(n), a1f(1)an+1f(n+1)=f(n)f(1)an数列an是首项为公比为的等比数列sn1- sn17 设是定义在区间上的函数,且满足条件: (i) (ii)对任意的 ()证明:对任意的 ()证明:对任意的 ()在区间1,1上是否存在满足题设条件的奇函数,且使得 若存在,请举一例:若不存在,请说明理由.()证明:由题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 股权质押担保与生物科技研发合作协议
- 知识产权股权转让中介服务合同
- 股权激励与员工股权激励终止合同模板
- 股权转让中的外资准入及合规审查合同
- 单间租房墙壁改造方案
- 2025北京市门头沟初三数学一模试卷(含答案)
- 狗年年会策划方案
- 耕地现状普查方案
- 企业技术评级方案
- 艺术园区评估方案
- 第四版(2025)国际压力性损伤溃疡预防和治疗临床指南解读
- 全国《法律职业资格考试》试卷一预热阶段同步训练卷(附答案)
- DB11-509-2017房屋建筑修缮工程定案和施工质量验收规程
- 2022年丹东市元宝区社区工作者招聘笔试题库及答案解析
- 艺术欣赏完整版课件全套ppt教程(最新)
- GB∕T 2518-2019 连续热镀锌和锌合金镀层钢板及钢带
- 教育培训机构辅导老师月度绩效考核表(KPI)
- (高清正版)JJF(浙)1162-2019空气热老化试验设备校准规范
- 国家开放大学《中国古代文学(B)(1)》章节测试参考答案
- 无机化学第4版下册(吉大宋天佑)2019
- 氨基酸抗生素生产工艺规程
评论
0/150
提交评论