




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2.1.1 数列的概念 与简单表示法,(1)人们在1740年发现了一颗彗星,并推算出这颗彗星每隔83年出现一次,那么从发现那次算起,这颗彗星出现的年份依次为,(2)“一尺之棰,日取其半,万世不竭”的意思为:一尺长的木棒,每日取其一半,永远也取不完。如果将“一尺之棰”视为一份,那么每日剩下的部分依次为,1、考察下面的问题,1740,1823,1960,1989,2072,,问题创设,( 1 )三角形数,( 2 )正方形数,2、观察以下2个例子:,1,3,6,10,1,4,9,16,问题创设,一、数列的概念:,按一定次序排列的一列数叫做数列,思考1:拿“1,2,3”这三个数来排,能排出几个数列?,
2、例如:三角形数 1,3,6,10, 正方形数 1,4,9,16,,1,2,3 2,1,3 3,1,2 1,3,2 2,3,1 3,2,1,注意:每个数列中的数都有特定的顺序,但不一定要有 特殊的规律.,一、数列的概念:,按一定次序排列的一列数叫做数列,注:数列中的每一个数都叫做这个数列的项,各项依次 叫做这个数列的第1项(或首项),第2项,第n项.,我们常把数列的一般形式写成 a1,a2,a3,an,. (nN*) 简记作an 。,例如:若用an来表示“2,1,3”这个数列,则a2=_;,1,思考2:能不能把数列“2,1,3”记为2,1,3?,不行,2,1,3是一个集合,集合中的元素是 没有顺
3、序的,一、数列的概念:,按一定次序排列的一列数叫做数列,注:数列中的每一个数都叫做这个数列的项,各项依次 叫做这个数列的第1项(或首项),第2项,第n项.,我们常把数列的一般形式写成 a1,a2,a3,an,. (nN*) 简记作an 。,思考3:an 与an的意思一样吗? an表示一个数列:a1,a2,a3,an,. an表示数列an中的第n项,各项都相等的数列 从第2项起,有些项大于它的前一项, 有些项小于它的前一项的数列,二、数列的分类: 1、以项数来分类: (1)有穷数列: (2)无穷数列: 2、以各项的大小关系来分类: (1)递增数列: (2)递减数列: (3)常 数 列: (4)摆
4、动数列:,项数有限的数列 项数无限的数列,对任意nN*,总有an+1an (或an+1-an0),对任意nN*,总有an+1an (或an+1-an0),从第2项起,每一项都大于它的前一项的数列,从第2项起,每一项都小于它的前一项的数列,思考:观察下列数列的特点,用适当的数填空,并猜想 这些数列的第n项an是什么? (1)1 , ,9,16,25, ,49, ; (2)2,4, ,16,32, ,128, ; (3)1,-1,1 , ,1,-1 , ,-1, ;,4,36,8,64,-1,1,三、数列的通项公式:,如果数列an的第n项an与序号n之间的关系可以 用一个公式来表示,那么这个公式就
5、叫做这个数列的 通项公式,简称通项。,例如:an=n2 就是数列1,4,9,16,的一个通项公式,注意:通项公式的主要作用是“知序号可求项” 如:数列n2的第11项是_ 一些数列的通项公式不是唯一的; 如:数列1,-1,1,-1, 不是每一个数列都能写出它的通项公式。 如:1,24,8,3,19,121,例1、试写出下面数列的一个通项公式,使它的前4项分别 是下列各数:,变题:4,6,8,10,变题:-3,-1,1,3,(1)2,4,6,8; (2)1,3,5,7;,an=2n,an=2n+2,an=2n-1,an=2n-5,变题:5,55,555,5555,(4)9,99,999,9999;
6、,(1)-2,2,-2,2; (2) (3)2,0,2,0;,拓展、试写出下面数列的一个通项公式,使它的前4项 分别是下列各数:,练习:课本P31第1,4题,小结,观察法求通项公式:,(1)常见数列:正整数列;奇数列,偶数列,平方数列,三角形数列,,(2) 分数列:观察分子、分母的特点。,(3) 指数数列:观察底数、指数的特点。,(4) 各项符号一正一负:,例1、已知数列an的通项公式是an=-n2+4n-1, (1)写出这个数列的前4项; (2)你能判断出这个数列哪一项最大吗?为什么?,注意:an=-n2+4n-1可看成以n为自变量的一个函数,(2)an=-n2+4n-1= -(n-2)2+
7、3 当n=2时,an取到最大值3,思考:上述数列的通项an=-n2+4n-1与函数f (x)= -x2+4x-1 有什么不同?,(3) -13是这个数列中的项吗?,递增数列: 递减数列:,对任意nN*,总有an+1an (或an+1-an0),对任意nN*,总有an+1an (或an+1-an0),例2、已知数列an的通项公式为an=n2+n,其中nN*, 求证an是个递增数列。,证明:对任意nN*,an+1-an=(n+1)2+(n+1)-(n2+n) =2n+20 an是个递增数列,五、数列与函数的关系:,从函数的观点看,数列可以看成以正整数集N* (或它的有限子集1,2,n)为定义域的函
8、数 an=f (n),当自变量按照从小到大的顺序依次取值时, 所对应的一列函数值.,数列的其他表示方法:,如:数列2,4,6,2n,,列表法,图象法,例4、下图中的三角形称为谢宾斯基三角形,在下图4个 三角形中,着色三角形的个数依次构成一个数列的前 4项,请写出这个数列的一个通项公式,并在直角坐标 系中画出它的图象.,(1),(2),(3),(4),思考:如果一个数列an的首项a1=1,从第2项起每一项 都等于它的前一项的2倍再加1,即 an=2an-1+1(n2) 则该数列的第5项是什么?,已知数列an的第1项(或前几项),且任意一项 an与前一项an-1(或前几项)间的关系可以用一个公式 来表示,那么这个公式叫做数列的递推公式,练习:试写出数列1,3,6,10,的一个递推公式。,解:a1=1,练习:写出下列数列an的前5项 (1)a1=5,an=an-1+3 (n2); (2)a1=2,an=2an-1 (n2);,思考:你能否利用上面两题的条件求出数列an的 通项公式?,(1)5,8,11,14,17 (2)2,4,8,16,32,二.数列的分类: 1.以项数来分类: (1)有穷数列: (2)无穷数列: 2.以各项的大小关系来分类: (1)递增数列: (2)递减数列: (3)常 数 列: (4)摆动数列:,项
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 压力容器用钢材焊接工艺要求考核试卷
- 汽车空调系统风道流动与压力损失分析考核试卷
- 领导力在远程团队管理中的应用考核试卷
- 机器制造企业宁静生产尺度化评定尺度
- 公司代理合同13篇
- 正规的离婚协议书(资料15篇)
- 污水安全治理活动方案
- 模特在田园走秀活动方案
- 汽车趣味游戏活动方案
- 民俗活动仪仗队活动方案
- 2024年江西石城县城投集团与赣江源农业发展有限公司招聘笔试参考题库含答案解析
- 《经济学基础》课后题答案
- 冲压作业安全管理措施
- 牛津上海版初中英语单词表(六年级至九年级)-
- 兼职家教个人求职工作简历模板
- 个人工作总结反思-不足之处与改进建议
- 【特岗】2017-2019年云南省特岗教师化学真题全解析版
- 科学素养大赛题库(500题)
- 2020电力工程施工测量标准
- DB15-T 2429-2021 公路用钢渣集料梯级生产技术规程
- 劳动教育智慧树知到课后章节答案2023年下丽水学院
评论
0/150
提交评论