版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、无穷级数,无穷级数,无穷级数是研究函数的工具,表示函数,研究性质,数值计算,数项级数,幂级数,付氏级数,第十一章,常数项级数的概念和性质,第一节,第十一章,给定一个数列,将各项依,即,称上式为无穷级数,,其中第 n 项,叫做级数的一般项,级数的前 n 项和,称为级数的部分和.,次相加, 简记为,收敛 ,则称无穷级数,并称 S 为级数的和,记作,一、常数项级数的概念,当级数收敛时, 称差值,为级数的余项.,则称无穷级数发散 .,显然,例1. 讨论等比级数,(又称几何级数),( q 称为公比 ) 的敛散性.,解: 1) 若,从而,因此级数收敛 ,从而,则部分和,因此级数发散 .,其和为,2). 若
2、,因此级数发散 ;,因此,n 为奇数,n 为偶数,从而,综合 1)、2)可知,时, 等比级数收敛 ;,时, 等比级数发散 .,则,级数成为,不存在 , 因此级数发散.,例2. 判别下列级数的敛散性:,解: (1),所以级数 (1) 发散 ;,(2),所以级数 (2) 收敛, 其和为 1 .,二、无穷级数的基本性质,性质1. 若级数,收敛于 S ,则各项,乘以常数 c 所得级数,也收敛 ,说明: 级数各项乘以非零常数后其敛散性不变 .,即,其和为 c S .,性质2. 设有两个收敛级数,则级数,也收敛, 其和为,说明:,(2) 若两级数中一个收敛一个发散 , 则,必发散 .,但若二级数都发散 ,
3、不一定发散.,例如,(1) 性质2 表明收敛级数可逐项相加或减 .,(用反证法可证),性质3.,在级数前面加上或去掉有限项, 不会影响级数,的敛散性.,性质4.,收敛级数加括弧后所成的级数仍收敛于原级数,的和.,推论: 若加括弧后的级数发散, 则原级数必发散.,注意: 收敛级数去括弧后所成的级数不一定收敛.,但,例如,,发散.,性质5、级数收敛的必要条件,设收敛级数,则必有,证:,可见: 若级数的一般项不趋于0 , 则级数必发散 .,例如,其一般项为,不趋于0,因此这个级数发散.,注意:,并非级数收敛的充分条件.,例如, 调和级数,虽然,但此级数发散 .,事实上 , 假设调和级数收敛于 S ,
4、 则,但,矛盾!,所以假设不真 .,例3.判断下列级数的敛散性:,例4.判断级数的敛散性:,解: 考虑加括号后的级数,发散 ,从而原级数发散 .,例5. 判断下列级数的敛散性, 若收敛求其和:,因,这说明原级数收敛 ,其和为,这说明原级数收敛, 其和为 3 .,二、交错级数及其审敛法,三、绝对收敛与条件收敛,第二节,一、正项级数及其审敛法,常数项级数的审敛法,第十一章,一、正项级数及其审敛法,若,定理 1. 正项级数,收敛,部分和序列,有界 .,则称,为正项级数 .,定理2 (比较审敛法),设,且存在,对一切,有,(1) 若强级数,则弱级数,(2) 若弱级数,则强级数,则有,收敛 ,也收敛 ;
5、,发散 ,也发散 .,是两个正项级数,(常数 k 0 ),证明级数,发散 .,证: 因为,而级数,发散,根据比较审敛法可知,所给级数发散 .,例2.,例1. 讨论 p 级数,(常数 p 0),的敛散性.,解: 1) 若,因为对一切,而调和级数,由比较审敛法可知 p 级数,发散 .,发散 ,2) 若,p 级数收敛,因为当,故,考虑强级数,的部分和,故强级数收敛 , 由比较审敛法知 p 级数收敛 .,时,2) 若,定理3. (比较审敛法的极限形式),则有,两个级数同时收敛或发散 ;,(2) 当 l = 0,(3) 当 l =,设两正项级数,满足,(1) 当 0 l 时,定理4 . 比值审敛法 (
6、Dalembert 判别法),设,为正项级数, 且,则,(1) 当,(2) 当,时, 级数收敛 ;,或,时, 级数发散 .,例如, p 级数,但,级数收敛 ;,级数发散 .,说明: 当,时,级数可能收敛也可能发散.,例5. 讨论级数,的敛散性 .,解:,根据定理4可知:,级数收敛 ;,级数发散 ;,定理5. 根值审敛法 ( Cauchy判别法),设,为正项级,则,数, 且,时 , 级数可能收敛也可能发散 .,例如 , p 级数,说明 :,例6. 证明级数,收敛于S ,似代替和 S 时所产生的误差 .,解:,由定理5可知该级数收敛 .,令,则所求误差为,并估计以部分和 Sn 近,内容小结,1.
7、利用部分和数列的极限判别级数的敛散性,2. 利用正项级数审敛法,必要条件,发 散,满足,比值审敛法,根值审敛法,收 敛,发 散,不定,比较审敛法,用它法判别,积分判别法,部分和极限,二 、交错级数及其审敛法,则各项符号正负相间的级数,称为交错级数 .,定理6 . ( Leibnitz 判别法 ),若交错级数满足条件:,则级数,收敛 , 且其和,其余项满足,证:,是单调递增有界数列,又,故级数收敛于S, 且,故,收敛,收敛,用Leibnitz 判别法判别下列级数的敛散性:,收敛,上述级数各项取绝对值后所成的级数是否收敛 ?,发散,收敛,收敛,三、绝对收敛与条件收敛,定义: 对任意项级数,若,若原
8、级数收敛, 但取绝对值以后的级数发散, 则称原级,收敛 ,数,为条件收敛 .,均为绝对收敛.,例如 :,绝对收敛 ;,则称原级,数,条件收敛 .,定理7. 绝对收敛的级数一定收敛 .,例7. 证明下列级数绝对收敛 :,证: (1),而,收敛 ,收敛,因此,绝对收敛 .,(2) 令,因此,收敛,绝对收敛.,必要条件,发 散,满足,比值审敛法,根值审敛法,绝对收 敛,发 散,比较审敛法,3. 任意项级数审敛法,收敛,绝对收敛,发散,思考与练习,设正项级数,收敛,能否推出,收敛 ?,提示:,由比较判敛法可知,收敛 .,注意:,反之不成立.,例如,收敛 ,发散 .,1. 判别级数的敛散性:,解: (1
9、),发散 ,故原级数发散 .,不是 p级数,(2),发散 ,故原级数发散 .,第三节,一、函数项级数的概念,二、幂级数及其收敛性,三、幂级数的运算,幂级数,第十一章,一、 函数项级数的概念,设,为定义在区间 I 上的函数项级数 .,收敛点,收敛域,为定义在区间 I 上的函数, 称,发散点,发散域,和函数,若用,令余项,则在收敛域上有,表示函数项级数前 n 项的和, 即,例如, 等比级数,它的收敛域是,它的发散域是,或写作,又如, 级数,级数发散 ;,所以级数的收敛域仅为,有和函数,二、幂级数及其收敛性,形如,的函数项级数称为幂级数,其中数列,下面着重讨论,例如, 幂级数,为幂级数的系数 .,即
10、是此种情形.,的情形, 即,称,收敛,发散,定理 1. ( Abel定理 ),若幂级数,则对满足不等式,的一切 x 幂级数都绝对收敛.,反之, 若当,的一切 x , 该幂级数也发散 .,时该幂级数发散 ,则对满足不等式,收敛半径,收敛区间,收敛域,定理 1. ( Abel定理 ),若幂级数,则对满足不等式,的一切 x 幂级数都绝对收敛.,反之, 若当,的一切 x , 该幂级数也发散 .,时该幂级数发散 ,则对满足不等式,证: 设,收敛,则必有,于是存在,常数 M 0, 使,定理2. 若,的系数满足,证:,1) 若 0,则根据比值审敛法可知:,当,原级数收敛;,当,原级数发散.,即,时,1) 当 0 时,2) 当 0 时,3) 当 时,即,时,则,2) 若,则根据比值审敛法可知,绝对收敛 ,3) 若,则对除 x = 0 以外的一切 x 原级发散 ,对任意 x 原级数,因此,因此,因此级数的收敛半径,对端点 x =1,的收敛半径及收敛域.,解:,对端点 x = 1, 级数为交错级数,收敛;,级数为,发散 .,故收敛域为,例1.求幂级数,例2.,的收敛域.,解: 令,级数变为,当 t = 2 时, 级数为,此级数发散;,当 t = 2 时, 级数为,此级数条件收敛;,因此级数的收敛域为,故原级数的收敛域为,即,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年电子商务专业题库网络市场分析
- 2026年金融投资顾问考试题库如何分析股票市场趋势
- 2026年音乐教育合唱指挥技巧方向专业模拟试题
- 2026年市场营销经理认证考试中级实战模拟题
- 2026年高级财务会计报表编制技巧实操题库
- 2026年健康教育与营养学知识测试题
- 2026年会计职称考试练习题财务报表编制与解析
- 2026年中考语文古诗词鉴赏与写作预测题集
- 2026年大数据分析与处理专家笔试题集
- 四川省遂宁市2025-2026学年高一上学期期末教学质量监测生物试题(含答案)
- 名著导读傅雷家书
- 钻探施工安全培训
- 博士组合物使用指南
- 高校辅导员队伍建设基本情况报告
- 《相变储热供暖工程技术标准》
- 安装防雨棚合同协议书
- DL∕T 1917-2018 电力用户业扩报装技术规范
- 光伏维修维保合同
- CJJ 82-2012 园林绿化工程施工及验收规范
- 黑龙江商业职业学院单招《语文》考试复习题库(含答案)
- 变压器借用合同范本
评论
0/150
提交评论