




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二次函数的图象和性质,y=ax2+k,人教版九年级数学下册,(y=ax2+k),复习回顾,向上,向下,(0 ,0),(0 ,0),y轴,y轴,当x0时, y随着x的增大而增大。,当x0时, y随着x的增大而减小。,x=0时,y最小=0,x=0时,y最大=0,抛物线y=ax2 (a0)的形状是由|a|来确定的,一般说来, |a|越大,抛物线的开口就越小.,1、二次函数yax2的图象与性质,复习回顾,2、二次函数y2x2的图象是_,它的开口向_,顶点坐标是_;对称轴是_,在对称轴的左侧,y随x的增大而_,在对称轴的右侧,y随x的增大而_。,抛物线,上,(0,0),y轴,减小,增大,探究与思考,1、
2、二次函数y2x21的图象与二次函数y2x2的 图象开口方向、对称轴和顶点坐标是否相同?你将 采取什么方法加以研究?,y=x2,y=x2+1,5 2 0 2 5,函数y=x2+1的图象与y=x2的图象的位置有什么关系?,函数y=x2+1的图象可由y=x2的图象沿y轴向上平移1个单位长度得到.,探究 与 思考,函数y=x2+1的图象与y=x2的图象的形状相同吗?,相同,当x_时,函数值y随x的增大而减小;当 x_时,函数值y随x的增大而增大,当x_ 时,函数取得最_值,最_值y_,课堂小结, 0, 0,= 0,小,小,0,探究与思考,2、二次函数y2x2-2的图象与二次函数y2x2的 图象开口方向
3、、对称轴和顶点坐标是否相同?你将 采取什么方法加以研究?,y=x2,y=x2-2,2 -1 0 -1 2,函数y=x2-2的图象可由y=x2的图象沿y轴向下平移2个单位长度得到.,函数y=x2-2的图象与y=x2的图象的位置有什么关系?,探究 与 思考,函数y=x2+1的图象与y=x2的图象的形状相同吗?,相同,函数y=ax2 (a0)和函数y=ax2+c (a0)的图象形状 ,只是位置不同;当c0时,函数y=ax2+c的图象可由y=ax2的图象向 平移 个单位得到,当c0时,函数y=ax2+c的图象可由y=ax2的图象 向 平移 个单位得到。,y=-x2-2,y=-x2+3,y=-x2,函数
4、y=-x2-2的图象可由y=-x2的图象沿y轴向下平移2个单位长度得到.,函数y=-x2+3的图象可由y=-x2的图象沿y轴向上平移3个单位长度得到.,图象向上移还是向下移,移多少个单位长度,有什么规律吗?,上加下减,相同,上,c,下,|c|,(1)函数y=4x2+5的图象可由y=4x2的图象 向 平移 个单位得到;y=4x2-11的图象 可由 y=4x2的图象向 平移 个单位得到。,(3)将抛物线y=4x2向上平移3个单位,所得的 抛物线的函数式是 。 将抛物线y=-5x2+1向下平移5个单位,所得的 抛物线的函数式是 。,(2)将函数y=-3x2+4的图象向 平移 个单位可得 y=-3x2
5、的图象;将y=2x2-7的图象向 平移 个 单位得到可由 y=2x2的图象。将y=x2-7的图象 向 平移 个单位可得到 y=x2+2的图象。,上,5,下,11,下,4,上,7,上,9,y=4x2+3,y=-5x2-4,小试牛刀,当a0时,抛物线y=ax2+k的开口 ,对称轴是 ,顶点坐标是 ,在对称轴的左侧,y随x的增大而 ,在对称轴的右侧,y随x的增大而 , 当x= 时,取得最 值,这个值等于 ; 当a0时,抛物线y=ax2+k的开口 ,对称轴是 ,顶点坐标是 ,在对称轴的左侧,y随x的增大而 ,在对称轴的右侧,y随x的增大而 ,当x= 时,取得最 值,这个值等于 。,y=-x2-2,y=
6、-x2+3,y=-x2,y=x2-2,y=x2+1,y=x2,上,y轴,(0,k),减小,增大,0,小,k,下,y轴,(0,k),增大,减小,0,大,k,总 结 归 纳,(4)抛物线y=-3x2+5的开口 ,对称轴是 ,顶点坐标是 ,在对称轴的左侧,y随x的增大而 ,在对称轴的右侧,y随x的增大而 , 当x= 时,取得最 值,这个值等于 。,6.二次函数y=ax2+c (a0)的图象经过点A(1,-1),B(2,5),则函数y=ax2+c的表达式为 。若点C(-2,m),D(n ,7)也在函数的图象上,则点C的坐标为 点D的坐标为 .,(5)抛物线y=7x2-3的开口 ,对称轴是 ,顶点坐标是 ,在对称轴的左侧,y随x的增大而 ,在对称轴的右侧,y随x的增大而 , 当x= 时,取得最 值,这个值等于 。,下,y轴,(0,5),减小,增大,0,大,5,上,y轴,(0,-3),减小,增大,0,小,-3,y=2x2-3,(-2,5),或,小试牛刀,及时小结,向上,向下,(0 ,k),(0 ,k),y轴,y轴,当x0时, y随着x的增大而增大。,当x0时, y随着x的增大而减小。,x=0时,y最小=0,x=0时,y最大=0,抛物线y=ax2 +k(a0)的图象可由y=ax2的图象通过上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中行重点账户管理办法
- 伤残抚恤管理办法解释
- 企业集体户口管理办法
- 公共道路景区管理办法
- 住宅使用装修管理办法
- 2025年全民国家安全教育日应知应会知识竞赛题及答案
- 2025年消防执业资格考试题库:消防救援队伍管理法规与消防行政复议试题含答案
- 2025年怀化市税务系统遴选面试真题带答案详解
- 2025年垃圾分类50道题(含答案解析)
- 2025韶关学院招聘笔试真题及答案详解一套
- 2025届湖北省路桥集团限公司校园招聘190人易考易错模拟试题(共500题)试卷后附参考答案
- 急性心力衰竭中国指南(2022-2024)解读
- 铝单板雨棚施工方案
- 《心脑血管疾病防治》课件
- 叠衣服课件小学生
- 【MOOC期末】《电子技术实习SPOC》(北京科技大学)期末慕课答案
- 特征值稳定性证明-洞察分析
- 智慧城市建设投标实施方案
- UL4703标准中文版-2020光伏线UL中文版标准
- 设备部班组安全培训
- 2024安置点生活垃圾清运合同书
评论
0/150
提交评论