SlideNote03.ppt_第1页
SlideNote03.ppt_第2页
SlideNote03.ppt_第3页
SlideNote03.ppt_第4页
SlideNote03.ppt_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、MLP,Week 03,Outline,Introduction Architecture Learning Process Learning Issues Summary and Further Discussion,Limit of Perceptron,XOR Problem,Limit of Perceptron,Nonlinear Separable Problem,+,Positive Class,Negative Class,Limit of Perceptron,Linear Classifier Linear Decision Boundary in Perceptron 2

2、 Dimensional Space: Line 3 Dimensional Space: Plane N Dimensional Space: Hyperplane Unsolvable to Problems XOR Problem Nonlinear Separable Research on Neural Network in Dark Age 1960 1980 (20 years) Motivation for inventing MLP Addition of intermediate layer called hidden layer Solvable even to Nonl

3、inear Separable,Limit of Perceptron,Solution to XOR Problem,1,1,bias,-0.5,0, 00 0, 11 1, 01 1, 11,Limit of Perceptron,Solution to XOR Problem,1,1,bias,-1.5,0, 00 0, 10 1, 00 1, 11,Limit of Perceptron,Solution to XOR Problem,0, 00 0, 11 1, 01 1, 10,1,1,1,1,1,-1.5,bias,bias,-1.5,-0.5,-0.5,Limit of Per

4、ceptron,Overview of MLP Addition of one more layer between input and output layer Added Layer called Hidden Layer Boundary: Linear Quadratic Solvable even to non-linear separable classification Approximation of any nonlinear function By Universe Theorem,Architecture,Input Layer,Output Layer,Hidden L

5、ayer,Architecture,Input Layer Receive input vector #Nodes = dimension of input vector Net input: element of input vector Output = Net Input Linear Function as Activation Function,Architecture,Input Nodes,Architecture,Hidden Layer Encode Input Vector into another Form Intermediate Layer Receive Net I

6、nput as the summation of product of input value and weights Compute its own output and transfer it to output layer #Nodes: Arbitrary Too Many Nodes Overfitting and High Complexity Too Few Nodes Underfitting and Poor Learning Linear Boundary Quadratic Boundary Activation Function: Sigmoid Function,Ar

7、chitecture,Hidden Nodes,Architecture,Output Layer Classification Output Value = CSV (Categorical Score Value) #Output Nodes = #Classes (or Categories) Output Value with Maximum Value Classified Class or Category Regression Univariate Regression: #Output Node = 1 Multivariate Regression: #Ouput Nodes

8、 = # Variables Output Value Estimated Output Value,Architecture,Hidden Nodes,Learning Rule: Back Propagation,Feed Forward,Output Computation,Input Layer,Output Layer,Hidden Layer,Learning Rule: Back Propagation,Weight Update,Input Layer,Output Layer,Hidden Layer,Backward,Learning Rule: Back Propagat

9、ion,Notations,Learning Rule: Back Propagation,Notations,Learning Rule: Back Propagation,Gradient Descent for Weights Optimization,Error Function to minimize,E,w,Learning Rule: Back Propagation,Update weight between output and hidden,Learning Rule: Back Propagation,Update weight between hidden and in

10、put,.,jth input,ith hidden,First output,cth ouput,.,Learning Rule: Back Propagation,Update weight between hidden and input,Learning Rule: Back Propagation,Batch Learning,Input: Training Examples Initialize Weights at Random Iterate T times for each training example compute values of hidden nodes com

11、pute value of output nodes compute average error update weights between output and hidden update weights between hidden and input Output: Optimized Weights,Learning Rule: Back Propagation,Interactive Learning,Input: Training Examples Initialize Weights at Random Iterate T times for each training exa

12、mple compute values of hidden nodes compute value of output nodes compute average error update weights between output and hidden update weights between hidden and input Output: Optimized Weights,Learning Issues,Optimization Architecture #Input Nodes Dimensions #Output Nodes Binary Classification: On

13、e node Multiple Classification: #Classes Univarite Regression: One node Multivariate Regression: #Output Variables #Hidden Nodes ? Validation Set Set of some training examples separated from given Training examples Reduction of #Training Examples for Training Parameter Optimization (#Learning epochs

14、) Falling into Local Minima Reducing following descent Once reach minima, not moving,Learning Issues,Parameter Settings Learning Rate: Arbitrary between 0 and 1 Close to 1: Fast Learning but Fluctuation Close to 0: Slow Learning but Stability #Hidden Nodes Many Nodes: Much Time for Learning, Overfit

15、ting Few Nodes: Less Time for Learning , Underfitting Training Iteration: Too Many: Overfitting Too Few: Underfitting,Learning Issues,Validation Set,Training Set,Test Set,For Training MLP,For Evaluating Performance Hide Target Labels during Training,Training Set,Validation Set,Learning Issues,Fallin

16、g into local minima,E,w,Learning Issues,Other Issues of MLP Obtaining Training Examples No Evidence to given answer Slow Learning Large Dimension in its application to real problems,Summary and Further Discussions,Summary Multiple Perceptrons as solution to Limit of Perceptron Architecture of MLP Le

17、arning Process of MLP Learning Issues of MLP,Summary and Further Discussions,Virtual Training Examples Solution to insufficient number of training examples Other Training Examples derived from given Training Examples Original Training Examples Actual Ones labeled with their Target Outputs, initially

18、 Derived Training Examples Virtual Ones without their target outputs Target Output by Generalization of MLP Actual Ones and Virtual Ones Training,Summary and Further Discussions,Co Learning Two MLPs: MLP 1 and MLP 2 Training Examples: Labeled + Unlabeled MLP 1 Trained by Labeled Ones MLP 2 Trained by Labeled Ones MLP 1 labels unlabeled training examples by its own generalization Set 1 MLP 2 labels unlabeled training examples by its o

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论