变速器换档叉尾架体加工工艺及关键工序工装设计
收藏
资源目录
压缩包内文档预览:(预览前20页/共32页)
编号:91257101
类型:共享资源
大小:1.05MB
格式:ZIP
上传时间:2020-08-04
上传人:QQ24****1780
认证信息
个人认证
王**(实名认证)
浙江
IP属地:浙江
50
积分
- 关 键 词:
-
变速器
换档
叉尾架体
加工
工艺
关键
工序
工装
设计
- 资源描述:
-
变速器换档叉尾架体加工工艺及关键工序工装设计,变速器,换档,叉尾架体,加工,工艺,关键,工序,工装,设计
- 内容简介:
-
南京理工大学泰州科技学院学生毕业设计(论文)中期检查表学生姓名施道伟学 号0501510132指导教师龚光容选题情况课题名称变速器换档叉尾架体加工工艺及关键工序工装设计难易程度偏难适中偏易工作量较大合理较小符合规范化的要求任务书有无开题报告有无外文翻译质量优良中差学习态度、出勤情况好一般差工作进度快按计划进行慢中期工作汇报及解答问题情况优良中差中期成绩评定:中所在专业意见:学习态度、出勤情况一般,工作进度慢,阶段成果不明显。 负责人: 年 月 日 南京理工大学泰州科技学院毕业设计(论文)任务书系部:机械工程系专 业:机械工程及自动化学 生 姓 名:施道伟学 号:0501510132设计(论文)题目:变速器换档叉加工工艺及关键工序工装设计起 迄 日 期:2008年 3月09 日 6月14日设计(论文)地点:南京理工大学泰州科技学院指 导 教 师:龚光容专业负责人:龚光容发任务书日期: 2009年 2 月 26 日任务书填写要求1毕业设计(论文)任务书由指导教师根据各课题的具体情况填写,经学生所在专业的负责人审查、系部领导签字后生效。此任务书应在第七学期结束前填好并发给学生;2任务书内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,不得随便涂改或潦草书写,禁止打印在其它纸上后剪贴;3任务书内填写的内容,必须和学生毕业设计(论文)完成的情况相一致,若有变更,应当经过所在专业及系部主管领导审批后方可重新填写;4任务书内有关“系部”、“专业”等名称的填写,应写中文全称,不能写数字代码。学生的“学号”要写全号;5任务书内“主要参考文献”的填写,应按照国标GB 77142005文后参考文献著录规则的要求书写,不能有随意性;6有关年月日等日期的填写,应当按照国标GB/T 74082005数据元和交换格式、信息交换、日期和时间表示法规定的要求,一律用阿拉伯数字书写。如“2008年3月15日”或“2008-03-15”。毕 业 设 计(论 文)任 务 书1本毕业设计(论文)课题应达到的目的:变速器换档叉是某企业产品中的关键零件之一,生产量比较大。为了保证产品质量,提高加工效率,需要对其加工工艺进行优化设计,并在关键工序使用组合机床或专用机床进行加工。本课题即以此为背景,要求学生根据企业生产需要和变速器换档叉零件的加工要求,首先完成零件的加工工艺规程设计,在此基础之上,选择其关键工序之一进行专用夹具及加工用组合机床设计,并完成必要的设计计算。通过这样一个典型环节综合训练,达到综合训练学生运用所学知识,解决工程实际问题的能力。2本毕业设计(论文)课题任务的内容和要求(包括原始数据、技术要求、工作要求等):本课题要求学生在对变速器换档叉的加工要求、零件的结构工艺性进行认真分析的基础上,首先对零件的加工工艺规程做出优化设计,并对其关键工序之一进行专用夹具及加工用组合机床设计。具体任务及要求如下:(1)调查研究、查阅及翻译文献资料,撰写开题报告;(2)变速器换档叉加工要求、零件的结构工艺性分析;(3)变速器换档叉加工工艺规程设计;(4)变速器换档叉关键工序的专用夹具设计;(5)变速器换档叉关键工序的组合机床设计;(6)必要的设计计算与分析;(7)文档整理、撰写毕业设计说明书及使用说明书。设计技术要求包括:(1)生产纲领 50000件/年(2)夹具采用液压驱动(3)组合机床采用液压滑台(4)每次加工一个零件毕 业 设 计(论 文)任 务 书3对本毕业设计(论文)课题成果的要求包括毕业设计论文、图表、实物样品等:(1)开题报告、文献综述、资料翻译;(2)变速器换档叉加工工艺过程综合卡及各工序工序卡;(3)变速器换档叉零件图及夹具装配图;(4)组合机床设计资料(三图一卡);(5)毕业设计说明书。 4主要参考文献:1 裘愉弢主编. 组合机床M. 第1版.北京:机械工业出版社,1995.2 金振华主编.组合机床及其调整与使用M. 第1版.北京:机械工业出版社,1990.3 沈延山.生产实习与组合机床设计D.第1版.大连:大连理工大学出版社,1989.4 上海市大专院校机械制造工艺学协作组编著.机械制造工艺学M(修订版).福建科学技术出版社,1996.5 王华坤,范元勋编.机械设计基础M.北京:兵器工业出版社,2000.6 冯辛安等编.机械制造装备设计M. 北京:机械工业出版社,1998.7 陈日曜主编.金属切削原理M. 第2版.北京:机械工业出版社,1992.8 方子良等编.机械制造技术基础M.上海:上海交通大学出版社,2004.9 刘秋生,李忠文主编.液压传动与控制M.北京:宇航出版社,1994.10 陈于萍,周兆元等.互换性与测量技术基础M. 第2版.北京:机械工业出版社,2005.11 东北重型机械学院等合编.机床夹具设计手册M.上海:上海科学技术出版社,1979.12机械设计手册联合编写组. 机械设计手册M. 第2版.北京:机械工业出版社,1987.毕 业 设 计(论 文)任 务 书5本毕业设计(论文)课题工作进度计划:起 迄 日 期工 作 内 容2009年3月09日 3 月15 日3月16日 3 月29 日3月30日 4 月19 日4月20日 5 月03 日5月04日 5 月31 日6月01日 6 月07 日6月08日 6 月14 日熟悉毕业设计要求。查阅资料,完成外文资料翻译工作撰写开题报告及文献综述变速器换档叉加工工艺规程设计(至少提出2个方案,进行分析比较,最后决定一个较优的方案)夹具设计(至少提出2个方案,进行分析比较,最后决定一个较优的方案)组合机床设计(完成三图一卡)文档整理、撰写毕业设计说明书。论文答辩所在专业审查意见:负责人: 2009年 月 日系部意见:系部主任: 2009年 月 日南京理工大学泰州科技学院毕业设计(论文)前期工作材料学生姓名:施道伟学 号:0501510132系部:机械工程系专 业:机械工程及自动化设计(论文)题目:变速器换档叉加工工艺及关键工序工装设计指导教师:龚光容教授 材 料 目 录序号名 称数量备 注1毕业设计(论文)选题、审题表12毕业设计(论文)任务书13毕业设计(论文)开题报告含文献综述14毕业设计(论文)外文资料翻译含原文15毕业设计(论文)中期检查表12009年5月 南京理工大学泰州科技学院毕业设计(论文)外文资料翻译系部: 机械工程 专 业: 机械工程及自动化 姓 名: 施道伟 学 号: 0501510132 (用外文写)外文出处: / 493114916?ptlang=2052 附 件: 1.外文资料翻译译文;2.外文原文。 指导教师评语: 签名: 年 月 日注:请将该封面与附件装订成册。附件1:外文资料翻译译文 机器人机器人可以界定一种由电子、电气或机械单位组成的可编程、自动控制装置。 更一般地说,它是一种职能到位的生活智能机器,机器人尤其可取的是某些工作职能。它他们和人类不同,他们不会感到疲惫和厌倦,可以在环境条件差和真空,甚至是危险的环境下工作,他们不会因为一味地重复工作感到厌倦放下手边的工作。机器人不同于一般机械设备的特征是机器人可以自己进行工作,并对内外部的工作状况进行检测,将检测到的结果反馈给控制系统,由控制系统下达命令来调整下一步的动作,更为重要的是机器人往往有能力去尝试不同的方法来完成某项任务。常见的工业机器人由于受到制造精度的限制,他们的外型看上去都非常的庞大和笨重,机器人在程序的控制下进行高效和高精度的工作。有人估计在1998年有72万台工业机器人被应用到生产中。可通信机器人被用在海底和核设施等半结构化的环境中,他们在那里从事非重复性任务,时间也没有太大的限制。“机器人”在古时候是指的是一个人,现代“机器人”一词最早出现在20世纪的捷克语中,在捷克语中机器人的意思是奴隶、仆人或被强迫工作的劳动力。 机器人与人有很大的区别,但他们也非常的灵活,能够完成各种不同的工作。据剧作家卡雷尔.卡培科介绍,最初的机器人就像弗兰肯斯坦博士的怪物-不是用机械式的方法,而是有化学和生物的原理造出来。从这些最初的生物创作来看,这和目前的机械机器人流行文化没有多大不同。目前机器人领域已经有了许许多多的具有基本物理和导航能力机器人,同时,人们也开始将机器人运用于从娱乐到卫生保健等各个部门的日常生活中,进而完全取代人类。许多爱好智能机器人的研究者正在不遗余力的进行机器人的设计。此外,机器人可用于更普遍的工作。例如清洁卫生的工作。然而发明机器人的最初目的是代替人类在肮脏、枯燥和危险下进行工作,可是现在他们现被当作个人助理。随着科学技术发展到一个新的境界,机器人将会具有更多的智慧,对人类的未来产生重大影响。现代机器人主要包括:机械装置,如用轮式平台、手臂或其它部件,能够在一定的空间范围内运动。传感器及其周边设备,能够对周围的环境状况做出检测,进而送入反馈装置。控制系统将传送过来的信息进行分析和计算,通过指令使装置做出调整适应环境的改变。机械平台-硬件部分:机器人主要分为两部分,机器人的身体和某种形式的人工智能(AI)系统,不同的身体部分也可以称为机器人。例如机器人手臂被用来焊接和油漆,有的机器人能够运送零件和在地球深层探矿。通常机器人最让人感兴趣的是它的行为,要一些人工智能。最简单的行为是机器人的定点运动,典型的是车轮被用做底部支撑和传动装置,在动力系统的指令下使机器人从一点运动到另一点。电机:各种电动马达提供电力给机器人,让他们去运送材料、零件、工具或专用装置。电机的效率等级表示电量转化成机械能的能力。传动装置: 齿轮和链条是机械的传动平台,它提供了强大而准确的从一个地方到另一个地方的传送旋转运动。变速的大小取决于两齿轮的齿数,当主动齿轮旋转一周,被动齿轮也转动一周。电源:电源供应器通常是两种类型的电池.主要电池只能使用一次,然后丢弃。次要电池大部分是通过可变的化学反应产生电能,进而反复利用,直到内部的化学物质不能产生电能。主要电池具有很多的物质和较低的自利用率。次要电池的能源物质比一次性电池少,但这种电池的电能可高达一千倍,这取决于其化学反应及其所在的环境。通常首次使用充电电池只能够提供4个小时的连续运行的能量,有数百种不同类型的电池可供机器人使用。电池可按其化学成分、大小、额定电压和容量来进行分类。不同的额定电压和能量适用于不同的机器人,这要根据机器人所要完成的工作来选择。通常机器人都用来两个电池组来供电,他们共用一个底部,当电机污染了其中一个电池时另一个电池会在电子系统的控制下自动关闭,这两个电池还能够为电机和电子系统提供不同的电压。电子控制: 机器人有两个主要的硬件平台,机械平台没有电压、电力和反电动势。电子平台有干净的电源和五伏电压。这两个平台需要通过一定的数字逻辑控制联系起来。电子元件是连接的桥梁,控制信号在继电器的线圈周围产生磁场,关闭开关。举例来说,高效率的硅开关,可以作为静态继电器控制机械系统控制元件。在另一方面,较大规模的机器人可能需要PMDC电源,其中MOSFET的on电阻,在散热芯片产生的热量下会急剧的增加,这就需要大大减少了芯片的热温度。永磁直流电动机的其他重要特色是电阻在交界温度下传导系数和及其包装和散热器。目前机器人中主要用到两大类晶体管:双极晶体管(双极型)和场效应晶体管(场效应),在双极晶体管中,基本电路中产生的电流能够调节发射端和接受端之间的电流。在场效应器件中存在着一个电场,此电场可以调节电源和阻抗之间的电流。 传感器:根据不同的任务,机器人的不同反应需要不同类型的传感器。在大多数系统中,通过电路和编程来定时时间,在生产实践中,机器人必须有灵敏的感知硬件和软件。不管是传感器的硬件还是软件,传感器和感知,都可以被看作与外部事件或外面的世界之间的交流。传感器技术在一定程度上也影响着社会上其它技术的发展,同时人们将传感器和转换器交叉利用。转换器通常是一个装置或传感器的一个元素,它可以将能源转换为另一种形式的能量,传感器接收能源并传送一个信号到显示器或计算机。传感器使用转换器将输入信号(声音、光、压力、温度等)转换为模拟或数字形式,这些数字和模拟量才可以被机器人利用。微系统:微控制器(单片机)是机器人内部的智能电子器件,他的功能类似于微处理器(电脑的中央处理单元,或CPU)。虽然微系统的速度较慢,能够处理的内存少比中央处理器的少,但它主要是对实际任务的控制。微系统和中央处理器的主要区别是,中央处理器有众多的外部元件需要来操作。而微系统不需要去操作外界的零部件,它通常只需要一个外部晶体或振荡器。微控制器通常包括四个基本方面:速度、规模、存储器及其他。速度是指定时时钟周期,而且通常是以百万赫兹每秒来计算。时钟周期的不同影响了微控制器的速度。规模的大小表示微控制器每步能够处理多少信息比特流。微控制器的程序可以一步扩大自然数组的信息。微控制器进来通常有4位、8位、16位和32位,其中最常见的是8位的微控制器。 微控制器分别以千字节(kb)和单字节来计算大部分光盘和RAM的存储量。很多单片机采用哈佛结构,在该结构内是存放信息的内存(通常是内部或外部的SRAM)。这种方法能使处理器更有效率处理单独的记忆信息。第四方面微系统的“其他”的包括这样的功能,如专用设备的投入,往往(但并非总是)有一个小型LED或LCD显示器输出。例如单片机也需投入设备和以不同成份的装置控制它发出的信号,同时单片机程序指针还跟踪正在执行的任务,看程序是否能正常运行下去。早在处理放射性材料的原子实验室里,工业机器人被称为主/从机械臂。他们通过机械联动和钢电缆联系起来,现在遥控机器人手臂可以通过按钮、开关或手柄来进行移动。目前机器人拥有先进的感觉系统,就像人类拥有的大脑一样能够处理进信息,完成不同的工作。它们的“大脑“实际上是一种计算机人工智能(AI),人工智能使机器人感觉内外部状况的变化,并根据所获得的信息决定采取相应的行动。 机器人(人造的)手臂的能够模仿人手的组合运动,完成各种不同性质的工作都是有可能的。机器人的手臂可以作出如下五种运动:整个手臂可以转动的底座、手臂可以提高或降低、手部(抓取机构)能够延长或撤回、手臂可以旋转、手掌的手指能够伸展和闭合 。机械人手臂可以看作是一个整体系统。所有用于自动分析的仪器都被设计在手臂能够达到的范围内,此外,这些仪器由电脑控制。在这种情况下需要的仪器主要包括:离心机(常用于分析血液样本)、分析仪(如分光光度计)、存放样本的仪器、平衡装置、一个空调机组(可能为搅拌器或烘箱)、配药和提取药品的工具、稀释化学品的工具。 计算机描述机器手臂的运动需要很多具体的步骤,甚至是一个很简单的任务也需要数以千计的操作和指令。对于用户来说,完成这项规划任务将需要很长的时间,它需要用户准确地预测精确座标轴各运动或每一个理想的位置。反之,机器人一般都装有一系列简单任务的程序,这些程序被称做预备程序。每个预备程序都是用来描述机器手臂的一个动作。用户根据一定的资料来安装手臂和其他零部件。当用户对机器手臂的动作感到满意时,这些资料就被计算机搜集并存入记忆。按照这种方法一个很复杂的动作就产生了。计算机会根据不同仪器的指令产生化学分析和加工的程序,这些程序是和复杂的动作一一对应的。通过计算机里的程序可对执行精确动作的机器手臂作进行例行实验。我门要根据所要完成的任务来编写程序,同时将执行任务的仪器考虑进去。当电脑不能够从输出装置获得运行、状态的信息时,未完成的工作被认为是特殊仪器的控制导致的,这样程序就需要合适的时间延迟。在制造业领域,机器人的开发重点是制造工艺的工程机械臂。在航天业业中,机器人技术集中在高度专门化,譬如一种行星探测车机器人,它和一台高度自动化的生产工厂不同,是在月球的黑暗面探进行测作业。在没有无线电通信的情况下,它们会遇到意想不到的情况,它必须具备一定的传感系统,能够将感知的信息进行分析,进而改变探测车的行动来适应环境的变化。此外,它还需要有人工智能系统对可能遇到的未知情况进行感知和适应。机器人的应用虽然提高了生产效率,但它们并不是特别快。目前,一个机器人的生产效率和一个操作者的生产效率不相上下,机器人的每个重大动作大约需要一秒时间。机器人从传送带上拾起一钢块到把它放置到车床,需要10个不同的动作,这样就耗时将近十秒钟。而一个操作人员在这段时间里同样能完成这项工作。生产率的提高是由于连续的一致性操作来实现的。如果操作人员在一整天的时间内反复地重复同一种工作,他的速度就会逐渐的放慢下来。机器人却能连续不间断的进行程序的运行,在一个工作日内生产出更多零部件。专门的自动化机器也可以达到机器人的生产效率。甚至在相同的工作时间里,专门自动化机器的生产效率是操作人员或机器人的二倍。但问题是,制造出的专门自动化机器只能应用在一种工作中,如果工作有了变化,这种机器就需要很大改进或报废,甚至不得不重新制造,然而机器人只需改变一下程序当天就可以开始新的工作了。但是专门的自动化机器也有它存在的可能性,如果知道一项工作在今后很多年内不会改变,制造专门的自动化机器是一个不错的选择。工厂里其他的工作,普通的机器也能完成。但像喷漆这样的工作,利用机器人来完成就再好不过了,因为喷漆是一项危险的工作,油漆挥发出来的气体带有毒性和可爆炸性,同时机器人能在密封的环境下进行喷漆。针对内部形状不同的机器,机器人根据内部程序的不同来完成喷漆工作。当机器人在有毒的环境下工作,人们可以不去担心喷漆室的毒气会对它造成伤害。连续的目标控制系统具有高度的灵活性和控制功能。今天的工业机器人一旦被编入了程序,他就有了自动控制的功能。由于受到传感器发展的限制,机器人能够对外部环境变化作出的灵活性也受到了限制,同时它也是计算机视觉研究的动力。控制系统是非常灵活,但它仍然需要依靠工作人员来进行控制。通过增强传感器的反馈能力,先进的机器人正在向更高的工作灵活性发展。人工智能、传感器集成化技术、计算机视觉技术以及无线VAD/CAM的程序化将会使控制系统变的更具有经济性和普遍性。作为人工控制的增强部分,控制系统正在向自主运作的方向发展。控制管理和人机交流方法的研究减轻了人们的工作负担,计算机的数据库管理提高了操作效率。 人类的研究活动对机器人和控制系统来说非常的普通,它的目标是降低成本和扩大应用的领域,这些需要先进的编程语言和提高人机交流方法。从军事科技、空间探索到医疗产业和商业,人类已经充分意识到了利用机器人的优势。更重要的一点他们逐渐成为我们日常生活和经验积累中不可或却的一部分。机器人凭借以下优势将人类从危险和恶劣的环境中解放出来:一、安全性:机器人技术已发展到能处理核安全和放射性化学品等方面,例如核武器、发电厂、环境治理、生产某些药物。二、服从性:机器人执行的很多任务都是繁重和人类感到厌烦却又不得不做的,像焊接和清洁卫生的工作。三、重复性和高精度:机器人已经被广泛用在装配线、太空探索等需要高精度的工作中。附件2:外文原文The RobotsRobot can be defined as a programmable, self-controlled device consisting of electronic, electrical, or mechanical units. More generally, it is a machine that functions in place of a living agent. Robots are especially desirable for certain work functions because, unlike humans, they never get tired; they can endure physical conditions that are uncomfortable or even dangerous; they can operate in airless conditions; they do not get bored by repetition; and they cannot be distracted from the task at hand. Characteristics that make robots different from regular machinery are that robots usually function by themselves, are sensitive to their environment, adapt to variations in the environment or to errors in prior performance, are task oriented and often have the ability to try different methods to accomplish a task. .Common industrial robots are generally heavy rigid devices limited to manufacturing. They operate in precisely structured environments and perform single highly repetitive tasks under preprogrammed control. There were an estimated 720,000 industrial robots in 1998. Teleported robots are used in semi-structured environments such as undersea and nuclear facilities. They perform non-repetitive tasks and have limited real-time control.The concept of robots is a very old one yet the actual word robot was invented in the 20th century from the Czechoslovakian word robot or robotics meaning slave, servant, or forced labor. Robots dont have to look or act like humans but they do need to be flexible so they can perform different tasks. The word robot originates from the Czech word for forced labor, or serf. It was introduced by playwright Karel Capek, whose fictional robotic inventions were much like Dr. Frankensteins monster - creatures created by chemical and biological, rather than mechanical, methods. But the current mechanical robots of popular culture are not much different from these fictional biological creations.The field of robotics has created a large class of robots with basic physical and navigational competencies. At the same time, society has begun to move towards incorporating robots into everyday life, from entertainment to health care. Moreover, robots could free a large number of people from hazardous situations, essentially allowing them to be used as replacements for human beings. Many of the applications being pursued by AI robotics researchers are already fulfilling that potential. In addition, robots can be used for more commonplace tasks such as janitorial work. Whereas robots were initially developed for dirty, dull, and dangerous applications, they are now being considered as personal assistants. Regardless of application, robots will require more rather than less intelligence, and will thereby have a significant impact on our society in the future as technology expands to new horizons. Basically a robots consists of: A mechanical device, such as a wheeled platform, arm, or other construction, capable of interacting with its environment; Sensors on or around the device that are able to sense the environment and give useful feedback to the device; Systems that process sensory input in the context of the devices current situation and instruct the device to perform actions in response to the situation Mechanical platforms - the hardware base: A robot consists of two main parts: the robot body and some form of artificial intelligence (AI) system. Many different body parts can be called a robot. Articulated arms are used in welding and painting; gantry and conveyor systems move parts in factories; and giant robotic machines move earth deep inside mines. One of the most interesting aspects of robots in general is their behavior, which requires a form of intelligence. The simplest behavior of a robot is locomotion. Typically, wheels are used as the underlying mechanism to make a robot move from one point to the next. And some force such as electricity is required to make the wheels turn under command. Motors: A variety of electric motors provide power to robots, allowing them to move material, parts, tools, or specialized devices with various programmed motions. The efficiency rating of a motor describes how much of the electricity consumed is converted to mechanical energy. Lets take a look at some of the mechanical devices that are currently being used in modern robotics technology. Driving mechanisms: Gears and chains are mechanical platforms that provide a strong and accurate way to transmit rotary motion from one place to another, possibly changing it along the way. The speed change between two gears depends upon the number of teeth on each gear. When a powered gear goes through a full rotation, it pulls the chain by the number of teeth on that gear. Power supplies: Power supplies are generally provided by two types of battery. Primary batteries are used once and then discarded; secondary batteries operate from a (mostly) reversible chemical reaction and can be recharged several times. Primary batteries have higher density and a lower self-discharge rate. Secondary (rechargeable) batteries have less energy than primary batteries, but can be recharged up to a thousand times depending on their chemistry and environment. Typically the first use of a rechargeable battery gives 4 hours of continuous operation in an application or robot. There are literally hundreds of types and styles of batteries available for use in robots. Batteries are categorized by their chemistry and size, and rated by their voltage and capacity. The voltage of a battery is determined by the chemistry of the cell, and the capacity by both the chemistry and size. See Table 1 for battery sizes. The robot platform runs off of two separate battery packs, which share only a ground. This way, the motor may dirty up one power source while the electronics can run off of the other. The electronics and the motors can also operate from different voltages. There are two major hardware platforms in a robot. The mechanical platform of unregulated voltages, power and back-EMF spikes, and the electronic platform of clean power and 5-volt signals. These two platforms need to be bridged in order for digital logic to control mechanical systems. The classic component for this is a bridge relay. A control signal generates a magnetic field in the relays coil that physically closes a switch. MOSFETs, for example, are highly efficient silicon switches, available in many sizes like the transistor that can operate as a solid state relay to control the mechanical systems. On the other hand, larger sized robots may require a PMDC motor in which the value of the MOSFETs on resistance Rds (on) results in great increases in the heat dissipation of the chip, thereby significantly reducing the chips heat temperature. Junction temperatures within the MOSFET and the coefficients of conduction of the MOSFET package and heat sink are other important characteristics of PMDC motors. There are two broad families of transistor: bipolar junction transistors (BJT) and field-effect transistors (FET). In BJT devices, a small current flow at the base moderates a much larger current between the emitter and collector. In FET devices, the presence of an electrical field at the gate moderates the flow between the source and drain. Sensors: Robots react according to a basic temporal measurement, requiring different kinds of sensors. In most systems a sense of time is built-in through the circuits and programming. For this to be productive in practice, a robot has to have perceptual hardware and software, which updates quickly. Regardless of sensor hardware or software, sensing and sensors can be thought of as interacting with external events (in other words, the outside world). The sensor measures some attribute of the world. The term transducer is often used interchangeably with sensor. A transducer is the mechanism, or element, of the sensor that transforms the energy associated with what is being measured into another form of energy. A sensor receives energy and transmits a signal to a display or computer. Sensors use transducers to change the input signal (sound, light, pressure, temperature, etc.) into an analog or digital form capable of being used by a robot. On the other hand, larger sized robots may require a PMDC motor in which the value of the MOSFETs on resistance Microcontroller systems: Microcontrollers (MCUs) are intelligent electronic devices used inside robots. They deliver functions similar to those performed by a microprocessor (central processing unit, or CPU) inside a personal computer. MCUs are slower and can address less memory than CPUs, but are designed for real-world control problems. One of the major differences between CPUs and MCUs is the number of external components needed to operate them. MCUs can often run with zero external parts, and typically need only an external crystal or oscillator. There are four basic aspects of a microcontroller: speed, size, memory, and other. Speed is designated in clock cycles, and is usually measured in millions of cycles per second (Megahertz, MHz). The use of the cycles varies in different MCUs, affecting the usable speed of the processor. Size specifies the number of bits of information the MCU can process in one step - the size of its natural cluster of information. MCUs come in 4-, 8-, 16-, and 32-bits, with 8-bit MCUs being the most common size. MCUs count most of their ROM in thousands of bytes (KB) and RAM in single bytes. Many MCUs use the Harvard architecture, in which the program is kept in one section of memory (usually the internal or external SRAM). This in turn allows the processor to access the separate memories more efficiently. The fourth aspect of microcontrollers, referred to as other, includes features such as a dedicated input device that often (but not always) has a small LED or LCD display for output. A microcontroller also takes input from the device and controls it by sending signals to different components in the device. Also the program counter keeps track of which command is to be executed by the microcontroller. Early industrial robots handled radioactive material in atomic labs and were called master/slave manipulators. They were connected together with mechanical linkages and steel cables. Remote arm manipulators can now be moved by push buttons, switches or joysticks. Current robots have advanced sensory systems that process information and appear to function as if they have brains. Their brain is actually a form of computerized artificial intelligence (AI). AI allows a robot to perceive conditions and decide upon a course of action based on those conditions. Robotic (articulated) arms emulate the motions of a human arm/hand combination. variety of arrangements for accomplishing this are possible .Five independent motions are summarized as follows:(1)The entire arm can rotate on the base plate.(2)The arm can be raised or lowered(3)The hand (grippers) can be extended or withdrawn.(4)The hand can rotate.(5)The fingers of the hand can open and close (yaw).Consider this robotic arm integrated into a system. All of the instrumentationnecessary for the automated analysis is located within the operational range of the robotic arm. In addition the instruments are under computer control. Instruments in such cases may include:a centrifuge (e. g. for analysis of blood samples ); an analytic instrument (e. g. a spectrophotometer or chromatograph); a rack to hold the samples ;a balance ;a conditioning unit (possibly a stirrer or temperature oven);an instrument for dispensing , extracting and/or diluting chemicals.A computer description of the motion of the robotic arm requires many detailed steps, even for simple tasks. This can include literally thousands of operations or instructions. for the user to complete such a programming task prior to successful operation of the program would take a prohibitively long time; it requires the user to predict accurately the precise coordinates of all axes of motion or each desired position .instead, robotic arms usually come with a series of programs that greatly simplify the task . These programs are often called training programs .a training program tasks the position of each member of the robotic arm . users position the arm and its members manually, using either a manipulanda or reserved keystrokes in combination with numerical information. When the user is satisfied with the successive motion that the robotic arm is to make ,the dataas tracked by the computer are stored in the computers memory .in this way a complex sequence of motions can be generated. These motions coupled with commands to the individual instruments produce an automated procedure for chemical analysis or processing.A program within the computer can be used to define precisely the steps taken by the robotic arm to carry out a routine test. This program must also take into consideration the tasks to be carried out by each instrument. When the computer does not obtain ongoing, continuous, status information from an instrument, the resultant Arrangement is referred to as open-loop control of the particular instrument. then the program must include appropriate time delays.In the manufacturing field, robot development has focused on engineering robotic arms that perform manufacturing processes. In the space industry, robotics focuses on highly specialized, one-of-kind planetary rovers. Unlike a highly automated manufacturing plant, a planetary rover operating on the dark side of the moon - without radio communication - might run into unexpected situations. At a minimum, a planetary rover must have some source of sensory input, some way of interpreting that input, and a way of modifying its actions to respond to a changing world. Furthermore, the need to sense and adapt to a partially unknown environment requires intelligence (in other words, artificial intelligence).Although robots increase productivity in a manufacturing plant,they are not exceptionally fast. At present, robots normally at or near the speed of a human operator.every major move of a robot normally takes approximately one second.for a robot to pick up a piece of steel from a conveyor and load it into a lathe may require ten different moves taking as much as ten seconds. A human operator can do the same amount of time.the increase in productivity is a result of thr consistency of operation.as the human operator repeats the same job over and over during the workday ,he or she begins to slow down .the robot continues to operateits programmed speed and theredore compleres more parts during thr workday.Custom-built automated machines can be built to do the same jobs that robots do .an automates machine can do the same loading operation in less than half the same time required by a robot or a human operator. The problem with desgning a special machine is that such a machine can perform only the specific job for which it was built. If any change ismade in the job, the machine must be completely rebuilt, or the machine must be scrapped and a new machine designed and built . a robot,on the other hand. Could be reprogammed and could start doing the new job the same day.Custom-built automated machines still have their place in industry. If a company knows that a job will not change for many years,the faster custom-built machine is still a good choice.Other jobs in factories cannot be done easily with custom-built machinery.for these applications a robot may be a good choice.an example of such an applocation is spray paining.spray paining is a h
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。