资源目录
压缩包内文档预览:(预览前20页/共89页)
编号:91257772
类型:共享资源
大小:1.59MB
格式:ZIP
上传时间:2020-08-04
上传人:QQ24****1780
认证信息
个人认证
王**(实名认证)
浙江
IP属地:浙江
50
积分
- 关 键 词:
-
工民建
毕业设计
- 资源描述:
-
工民建毕业设计,工民建,毕业设计
- 内容简介:
-
毕业设计(论文)目录摘要1第1章 建筑设计211 设计任务和主要要求2111 设计任务2112 设计要求212 建筑物所处的自然条件3121 气象条件3122 地形、地质及地震烈度3123 水文313 建筑设计文件的内容及要求3第2章 结构设计421 设计资料422 结构设计的一般原则4221 结构设计目的4222 结构设计的一般原则423 结构选型4231 结构体系选型4232 框架施工方法5233 其他结构选型524 框架结构计算简图及构件尺寸5241 简化假定5242 计算单元5243 计算简图6244 梁柱截面尺寸及惯性矩625 荷载计算9251 恒载标准值计算9252 活荷载标准值计算10253 竖向荷载下框架受荷总图11254 竖向荷载下框架受荷总图13255 竖向荷载下框架受荷总图1426 荷载计算15261 恒载作用下的内力计算16262 活载作用下的内力计算24263 风荷载作用下的内力计算5027 框架内力组合51271 弯矩调幅52272 控制截面的选择52273 控制截面的选择52274 框架梁的内力组合53275 框架柱内力组合5528 梁柱截面配筋图56281 梁柱截面配筋计算56282 框架柱的配筋计算6129 柱下基础设计66291 基础选型66292确定基础截面尺寸及配筋66结论73结束语74参考资料75附录(英文翻译)76摘要瑞达集团办公楼位于长沙市,总共5层。建筑总高为15.6m,共5层。其中底层层高为3.6m,其余各层层高为3.0m。局部突出屋面的塔楼为楼梯间,高3.0m。建筑部分:根据建筑的地理位置,所有的功能分区等设计依据进行平面布置、立面、剖面等方面的建筑设计,力求建筑物的实用、经济、美观。结构部分:结构形式为框架结构,所有的梁、柱及板均采用现浇,基础采用柱下独立基础,绘出结构施工图。关键词:框架结构 现浇AbstractRuiDa Group locates at ChangSha in Hunan Province. It consists of five stories, 15.6m high. The first story is 3.6m high, and the others stories are 3.0m high. In the top story, there is a stairwell 3.0m high. Architectural part: According to its geography situation and all requisite functions and others conditions, we carry out architecture about the plane layout, vertical plane and vertical sections, etc. At this time, we try our best to make the building beautiful, economical and useful.Structural part: The structure form is a frame structure, all of the columns, beams, and slabs are cast-in-site. Foundations are independent foundations under columns, and we finish the drawing of the structural design for the next construction at last.Key word: Frame structure Cast-in-site第1章 建筑设计建筑设计是在总体规划的前提下,根据任务书的要求综合考虑基地环境,使用功能,结构施工,材料设备,建筑经济及建筑艺术等问题。着重解决建筑物内部各种使用功能和使用空间的合理安排,建筑与周围环境,与各种外部条件的协调配合,内部和外表的艺术效果。各个细部的构造方式等。创造出既符合科学性又具有艺术的生产和生活环境。建筑设计在整个工程设计中起着主导和先行的作用,除考虑上述各种要求以外,还应考虑建筑与结构,建筑与各种设备等相关技术的综合协调,以及如何以更少的材料,劳动力,投资和时间来实现各种要求,使建筑物做到适用,经济,坚固,美观,这要求建筑师认真学习和贯彻建筑方针政策,正确学习掌握建筑标准,同时要具有广泛的科学技术知识。建筑设计包括总体设计和个体设计两部分。11 设计任务和主要要求111 设计任务本设计的主要内容是办公楼的设计,办公楼属于行政办公建筑类。作为一个办公空间设计,要在平面规划中自始至终遵循实用、功能需求和人性化管理充分结合的原则。在设计中,既结合办公需求和工作流程,科学合理的划分职能区域,也考虑员工与领导之间、职能区域之间的相互交流。材料运用简洁,大方,耐磨,环保的现代材料,在照明采光上使用全局照明,能满足办公的需要.经过精心设计,在满足各种办公需要的同时,又简洁,大方,美观,能充分体现出企业的形象与现代感.112 设计要求建筑法规、规范和一些相应的建筑标准是对该行业行为和经验的不断总结,具有指导意义,尤其是一些强制性规范和标准,具有法定意义。建筑设计除了应满足相关的建筑标准、规范等要求之外,原则上还应符合以下要求:(1) 满足建筑功能要求:(2) 符合所在地规划发展的要求并具有良好的视觉效果;(3) 采用合理的技术措施;(4) 提供在投资计划所允许的经济范畴内运作的可行性。12 建筑物所处的自然条件121 气象条件建设地区的温度、湿度、日照、雨雪、风向、风速等是建筑设计的重要依据,例如:炎热地区的建筑应考虑隔热、通风、遮阳、建筑处理较为开敞;在确定建筑物间距及朝向时,应考虑当地日照情况及主要风向等因素。122 地形、地质及地震烈度基地的地形,地质及地震烈度直接影响到房屋的平面组织结构选型、建筑构造处理及建筑体型设计等。地震烈度,表示当发生地震时,地面及建筑物遭受破坏的程度。烈度在6度以下时,地震对建筑物影响较小,一般可不做抗震计算,9度以上地区,地震破坏力很大,一般应尺量避免在该地区建筑房屋,建筑物抗震设防的重点时7、8、9度地震烈度的地区。123 水文水文条件是指地下水位的高低及地下水的性质,直接影响到建筑物基础及地下室。一般应根据地下水位的高低及底下水位性质确定是否在该地区建筑房屋或采用相应的防水和防腐措施。13 建筑设计文件的内容及要求建筑初步设计内容:绘制“3平2立1剖”:“3平”即1个底层平面图,1个楼层平面图,加1个屋顶平面图;“2立”指1个南侧或北侧立面图,加1个东侧或西侧立面图;“1剖”必须剖到楼梯。 建筑设计文件要求:以上图纸均需达到施工图深度,弄清建筑平面、立面和剖面之间的关系,熟悉建筑施工图的表达方式及深度要求,掌握常用的建筑构造措施等。建议用2号图绘制,绘图比例、布局和张数自定,以表达清楚且符合制图习惯为原则。第2章 结构设计21 设计资料工程名称:长沙市瑞达集团办公楼建设地点:湖南省长沙市工程概况:建筑总高为15.6m,共5层。其中底层层高为3.6m,其余各层层高为3.0m。局部突出屋面的塔楼为楼梯间,高3.0m。基本风压:0.35kN/m2基本雪压:0.45kN/m2抗震设防烈度:6度,不考虑抗震设防计算。22 结构设计的一般原则221 结构设计目的工程设计是工程建设的首要环节,是整个工程的灵魂。先进合理的设计对于改建、扩建、新建项目缩短工期、节约投资、提高经济效益起着关键作用,使项目达到安全、适用、经济、美观的要求。因而建筑结构设计的基本目的就是要在一定经济条件下赋予结构以适当的可靠度,使结构在预定的基准期内能满足设计所预期的各种功能要求。222 结构设计的一般原则为了达到建筑设计的基本目的,结构设计中应符合以下一般原则:符合设计规范;选择合理的结构设计方案;减轻结构自重;采用先进技术。23 结构选型231 结构体系选型对于一般多层民用建筑,根据使用和工艺要求、材料供应情况和施工技术条件,常选用的结构形式有混合结构、钢筋混凝土框架结构和框架剪力墙结构等结构体系。由于混合结构整体性差,难于满足大空间的使用要求,而框架剪力墙结构多用于1025层的高层建筑。而框架结构强度高、结构自重轻,可以承受较大楼面荷载,在水平作用下具有较大的延性。此外框架结构平面布置灵活,能设置大空间,易于满足建筑功能要求。故该五层办公楼选用框架结构。232 框架施工方法钢筋混凝土框架结构按施工方法不同,有现浇式、装配式和整体装配式三种。现浇式框架的全部构件都在现场整体浇筑,其整体性和抗震性能好,能较好的满足使用要求。故框架采用现浇施工方法。233 其他结构选型1. 屋面结构:采用现浇钢筋混凝土肋形屋盖,屋面板厚120mm。2. 露面结构:采用现浇钢筋混凝土肋形楼盖,露面板厚120mm。3. 楼梯结构:采用钢筋混凝土板式楼梯。4. 过梁:门窗过梁均采用钢筋混凝土梁,并采用纵向框架兼做窗过梁。5. 墙基础:因持力层不太深,承载力高,采用自乘墙基大放脚。6. 基础:因基础持力层不太深,地基承载力高,采用钢筋混凝土柱下独立基础。24 框架结构计算简图及构件尺寸241 简化假定建筑物是复杂的空间结构体系,要精确地按照三维空间结构来进行内力和位移分析十分困难。为简化计算,对结构体系引入以下基本假定:(1) 在正常设计、正常施工和正常使用的条件下,结构物在设计基准期内处于弹性工作阶段,其内力和位移均按弹性方法计算;(2) 楼面(或屋面)在自身平面内的刚度无限大,在平面外的刚度很小,可忽略不计。242 计算单元多层框架结构是由纵、横向框架结构组成的空间结构体系,在竖向荷载作用下,各个框架之间的受力影响较小。本设计中取KJ2作为计算单元 ,如图21所示:图21 结构平面布置图243 计算简图现浇多层框架结构设计计算模型是以梁、柱截面几何轴线来确定,并认为框架柱在基础顶面为固接,框架各节点纵、横向均为刚接。一般情况下,取框架梁、柱截面几何轴线之间的距离作为框架的跨度和柱高度。底层柱高从基础顶面算至二层楼面,基础顶面标高根据地质条件、室内外高差,定为-1.1m,二层楼面标高为3.6m,故底层柱高为4.7m。其余各层柱高为楼层高3.0m。由此可绘出框架计算简图,如图22所示:图22 框架结构计算简图244 梁柱截面尺寸及惯性矩多层框架结构是超静定结构,在计算内力前必须先确定杆件的截面形状、尺寸和惯性矩。1 初估构件截面尺寸及线刚度(1). 梁截面尺寸 边跨 取h=600mm 取b=250mm 则取边跨截面尺寸为:hb=250mm600mm中跨 考虑刚度因素,取取 则取边跨截面尺寸为:hb=250mm500mm(2). 柱截面尺寸 底层柱尺寸 按轴压比要求计算,由公式 : 式中: 轴压比取1.0;轴压比增大系数,本设计取=1.0; F柱的荷载面积; 单位建筑面积上重力荷载值,近似取12-15 kN/m2; n验算截面以上楼层层数。 对于顶层中柱: 如取柱截面为正方形,则其边长为416。 根据以上计算结果,并考虑其他因素,本设计中所有柱子截面尺寸都取500mm500mm。 非计算单元的内梁截面尺寸初估方法如上,计算从略。2. 框架梁、柱线刚度计算 由于现浇楼面可以作为梁的有效翼缘,增大梁的有效刚度,减少框架侧移。考虑这一有利因素,边框架梁取,对中框架梁取。(为梁矩形截面惯性矩) 边跨梁: 中跨梁: 柱: 相对线刚度:取。则其余各杆件相对线刚度为: 框架梁、柱的相对线刚度如图23所示,将作为计算节点杆端弯矩分配系数的依据。图23 梁柱相对线刚度图25 荷载计算251 恒载标准值计算1. 屋面防水层(刚性):30mm厚C20细石混凝土防水 1.00kN/m2 防水层(柔性):三毡四油铺小石子 0.40kN/m2找平层:15mm厚水泥砂浆 0.01520 kN/m3=0.30kN/m2找坡层:平均40mm厚水泥焦渣找坡 0.04014 kN/m3=0.56kN/m2保温层:60mm厚1:10水泥膨胀珍珠岩 0.06012 kN/m3=0.72kN/m2结构层:120mm厚现浇钢筋混凝土板 0.12025 kN/m3=3.00kN/m2抹灰层:10mm厚混合砂浆 0.01017 kN/m3=0.17 kN/m2合计 6.15kN/m22. 各层楼面(含走廊)水磨石地面(10mm厚面层,20mm厚水泥砂浆打底) 0.65kN/m2结构层:120mm厚现浇钢筋混凝土板 0.12025 kN/m3=3.00kN/m2抹灰层:10mm厚混合砂浆 0.01017 kN/m3=0.17kN/m2合计 3.82kN/m2 3. 梁自重hb=300mm700mm梁自重: 0.3(0.7-0.12)25 kN/m3=4.35kN/m抹灰层:10mm厚混合砂浆 0.01(0.7-0.12+0.25/2) 217 kN/m3=0.25kN/m 合计 4.60kN/m hb=250mm600mm梁自重: 0.25(0.6-0.12)25 kN/m3=3.00kN/m抹灰层:10mm厚混合砂浆 0.01(0.6-0.12+0.25/2) 217 kN/m3=0.21kN/m 合计 3.21kN/m hb=250mm500mm梁自重: 0.25(0.5-0.12)25 kN/m3=2.38kN/m抹灰层:10mm厚混合砂浆 0.01(0.5-0.12+0.25/2) 217 kN/m3=0.17kN/m 合计 2.55kN/m 4. 柱自重 hb=500mm500mm柱自重: 0.50.525 kN/m3=6.25kN/m抹灰层:10mm厚混合砂浆 0.01(0.5+0.5) 217 kN/m3=0.34kN/m 合计 6.59kN/m 5. 外纵墙自重 标准层纵墙: (3.0-0.6)(8.4-0.5)-1.51.52 0.2418 kN=62.46kN铝合金窗(1.51.5): 1.51.520.35 kN=1.58kN贴瓷砖外墙面: 3.0(8.4-0.5)-1.51.52 0.5 kN=9.60kN水泥粉刷内墙面: 3.0(8.4-0.5)-1.51.52 0.36 kN=6.91kN 合计 80.55kN 底层纵墙: (4.7-0.6)(8.4-0.5)-1.51.52 0.2418 kN=120.48kN铝合金窗(1.51.5): 1.51.520.35 kN=1.58kN贴瓷砖外墙面: 3.6(8.4-0.5)-1.51.52 0.5 kN=11.97kN水泥粉刷内墙面: 3.6(8.4-0.5)-1.51.52 0.36 kN=8.62kN 合计 142.65kN6. 内纵墙自重 标准层纵墙: (3.0-0.6)(8.4-0.5)-0.92.12 0.2418 kN=123.60kN门(hb=0.92.1): 5 kN=0.57kN粉刷墙面: (3.0-0.6)(8.4-0.5)-0.92.12 0.362 kN=10.93kN 合计 78.08kN/m 底层纵墙: (4.7-0.6)(8.4-0.5)-0.92.12 0.2418 kN=123.60kN门(hb=0.92.1): 5 kN=0.57kN粉刷墙面: (3.6-0.6)(8.4-0.5)-0.92.12 0.362 kN=14. 34kN 合计 138.51kN/m 7. 内隔墙自重 标准层墙重: (3.0-0.6)(6.0-0.5)0.2418 kN=57.02kN粉刷墙面: (3.0-0.6)(6.0-0.5) 0.362 kN=9.05kN 合计 66.07kN 底层墙重: (4.7-0.6)(6.0-0.5)0.2418 kN=97.42kN粉刷墙面: (3.6-0.6)(6.0-0.5) 0.362 kN=11.88kN 合计 109.30kN 252 活荷载标准值计算1. 屋面和楼面活荷载标准值上人屋面:2.0kN/m2楼面:办公室:2.0kN/m2 ;走廊:2.0kN/m22.雪荷载:基本雪压:0.45kN/m2雪荷载标准值:屋面活荷载和雪荷载不同时考虑,二者中取大值。253 竖向荷载下框架受荷总图1. BC,DE轴间框架梁屋面板传荷载:板传至梁上的三角形或梯形荷载为均布荷载,荷载的传递示意图,如图24所示:图24 荷载传递示意图恒载: 活载: 楼面板传荷载:荷载传递示意图如图24所示恒载: 活载: 梁自重: 2BC,DE轴间框架梁均布荷载为:屋面梁:恒载=梁自重+板传荷载 = 活载=板传荷载 =楼面梁:恒载=梁自重+板传荷载 = 活载=板传荷载 =CD轴间框架梁均布荷载为:梁自重: 屋面梁:恒载=梁自重 = 活载=0楼面梁:恒载=梁自重 = 活载=03. B、E轴柱纵向集中荷载的计算顶层柱:女儿墙自重(做法:墙高1100mm,混凝土压顶100mm)天沟自重:现浇,如图25所示 顶层柱恒载=女儿墙及天沟自重+纵梁自重+板传荷载 顶层柱活载=板传荷载 =标准层柱恒载=外纵墙自重+纵梁自重+板传荷载+横隔墙 顶层柱活载=板传荷载 =4. C、D轴柱纵向集中荷载的计算顶层柱恒载=梁自重+板传荷载 顶层柱活载=板传荷载 =标准层柱恒载=内纵墙自重+纵梁自重+板传荷载+横隔墙 顶层柱活载=板传荷载 =由上可作出框架在竖向荷载作用下的受荷总图,如图26所示:图26 竖向荷载作用下受荷总图254 竖向荷载下框架受荷总图作用在屋面梁和搂面梁节点处的集中风荷载标准值:为了简化计算,通常将计算单元范围内外墙面的分布荷载化为等量的作用于楼面的集中风荷载。式中:基本风压 风压高度变化系数。因建设地点处于大城市郊区,地面粗糙程度为B类; 风荷载体型系数,查表取=1.3; 风振系数。由于结构高度小于30m,且高宽比18.4/14.4=1.261.5,则取=1.0; 下层柱高; 上层柱高,顶层取女儿墙高度的两倍; B计算单元迎风面宽度(B=8.4m)计算过程见表21表21 风荷载标准值计算层数离地高度518.11.0 1.3 1.2 0.353.0 2.4 12.38 413.11.0 1.3 1.1 0.353.0 3.0 12.61 310.11.0 1.3 1.0 0.353.0 3.0 11.47 27.11.0 1.3 1.0 0.353.0 3.0 11.47 14.11.0 1.3 1.0 0.354.1 3.0 13.57 255 竖向荷载下框架受荷总图1. 侧移刚度见表22和表23表22 横向25层D值的计算构件名称B轴柱0.30120909C轴柱0.51335636D轴柱0.51335636E轴柱0.30120909表23 横向底层D值的计算构件名称B轴柱0.5519967C轴柱0.71712970D轴柱0.71712970E轴柱0.55199672. 风荷载下框架位移计算水平荷载作用下框架的层间侧移可按下式计算:式中: 第j层的剪力; 第j层所有柱的抗侧刚度之和; 第j层的层间位移。第一层的层间位移值求出以后,就可以计算各楼板标高处的侧移值的顶点侧移值,各层楼板标高处的侧移值应该是该层以下各层层间侧移之和,顶点侧移是所有各层层间侧移之和。j层侧移 顶点侧移 框架在风荷载下侧移的计算见表24,如下:表24 框架在风荷载下侧移计算层号512.3812.381130900.000111/27273412.6124.991130900.000221/13636311.4735.461130900.000321/9375211.4747.931130900.000471/7143113.5761.50458760.001341/3060侧移验算:层间最大侧移值为: 1/30601/550,满足要求顶点侧移 且 u/H=1/7510 750 m/s, 360m/s to 750 m/s, 180 m/s to 360 m/s, and 180 m/s, respectively. The ground motion data are chosen from different destructive earthquakes around the world earthquake name, date of earthquake, data source, record name, peak ground accelerations (pga) for the components, effective durations and fault types for each data are presented in the Table1., respectively.The peak ground accelerations are in the range 0.046 to 0.395g, where g is acceleration due to gravity. All ground motion data are recorded in near-field region as in maximum 20 km distance.DESCRIPTION OF THE FRAME STRUCTURES3, 5, 8 and 15-story RC frame structures with typical cross-sections and steel reinforcements are shown in Figure 1. The reinforced concrete frame structures have been designed according to the rules of the Turkish Code. The structures have been considered as an important class 1 with subsoil type of Z1 and in seismic region 1. The dead, live and seismic loads have been taken account during design.All reinforced concrete frame structures consist three-bay frame, spaced at 800 cm. The story height is 300 cm. The columns are assumed as fixed on the ground. Yield strength of the steel reinforcements is 22 kN/cm2 and compressive strength of concrete is 1.6kN/cm2.The first natural period of the 3-story frame structure is computed 0.54 s. The cross-section of all beams in this frame is rectangular-shapes with 25cm width and 50cm height. The cross-section of all columns is 30cmx30cm. The first natural period of 5-story frame structure is 0.72 s and the cross-section of beams is 25cm width and 50cm height similar to 3-story frame. Cross-section of columns at the first three stories is 40cmx40cm and at the last two stories, it is 30cmx30cm. The eight-story and 15-story frame structures have natural period of 0.90 s and 1.20 s. The cross section of beams for both frame structures is 25cmx55cm. The 8-story frame structure has 50cmx50cm columns for the first five stories and 40cmx40cm for the last three stories. The cross section of columns for first eight stories in the 15-story frame structures is 80cmx80cm and at the last seven stories, it is 60cmx60cm.NONLINEAR STATIC PUSHOVER ANALYSIS OF FRAME STRUCTURESFor low performance levels, to estimate the demands, it is required to consider inelastic behavior of the structure. Pushover analysis is used to identify the seismic hazards, selection of the performance levels and design performance objectives. In Pushover analysis, applying lateral loads in patterns that represent approximately the relative inertial forces generated at each floor level and pushing the structure under lateral loads to displacements that are larger than the maximum displacements expected in design earthquakes (Li, Y.R., 1996). The pushover analysis provides a shear vs. displacement relationship and indicates the inelastic limit as well as lateral load capacity of the structure. The changes in slope of this curve give an indication of yielding of various structural elements. The main aim of the pushover analysis is to determine member forces and global and local deformation capacity of a structure. The information can be used to assess the integrity of the structure.After designing and detailing the reinforced concrete frame structures, a nonlinear pushover analysis is carried out for evaluating the structural seismic response. For this purpose the computer program Drain 2D has been used. Three simplified loading patterns; triangular, (IBC, k=1), (IBC, k=2) and rectangular, where k is an exponent related to the structure period to define vertical distribution factor, are used in the nonlinear static pushover analysis of 3, 5, 8 and 15-story RC frame structures.Load criteria are based on the distribution of inertial forces of design parameters. The simplified loading patterns as uniform distribution, triangular distribution and IBC distribution, these loading patterns are the most common loading parameters.Vertical Distribution of Seismic Forces: (1) (2)where:Cvx= Vertical distribution factorV = Total design lateral force or shear at the base of structurewi and wx = The portion of the total gravity load of the structurehi and hx = The height from the basek = An exponent related to the structure periodIn addition these lateral loadings, frames are subjected live loads and dead weights. P- effects have been taken into the account during the pushover analyses. The lateral force is increased for 3, 5 and 8-story frames until the roof displacement reached 50 cm and 100cm for15-story frame. Beam and column elements are used to analyze the frames. The beams are assumed to be rigid in the horizontal plane. Inelastic effects are assigned to plastic hinges at member ends. Strain-hardening is neglected in all elements. Bilinear moment-rotation relationship is assumed for both beam and column members. Axial load-Moment, P-M, interaction relation, suggested by ACI 318-89, is used as yielding surface of column elements. Inertial moment of cracked section, Icr, is used for both column and beam members during analyses. Icr is computed as half of the gross moment of inertia, Ig.The results of the pushover analyses are presented in Figures 2 to 5. The pushover curves are shown for three distributions, and for each frame structures. The curves represent base shear-weight ratio versus story level displacements for uniform, triangular and IBC load distribution. Shear V was calculated by summing all applied lateral loads above the ground level, and the weight of the building W is the summation of the weights of all floors. Beside these, these curves represent the lost of lateral load resisting capacity and shear failures of a column at the displacement level. The changes in slope of these curves give an indication of yielding of various structural elements, first yielding of beam, first yielding of column and shear failure in the members. By the increase in the height of the frame structures, first yielding and shear failure of the columns is experienced at a larger roof displacements (Figures 2-5.) and rectangular distribution always give the higher base shear-weight ratio comparing to other load distributions for the corresponding story displacement (horizontal displacement).NONLINEAR DYNAMIC TIME HISTORY ANALYSIS OF FRAME STRUCTURESAfter performing pushover analyses, nonlinear dynamic time history analyses have been employed to the four different story frame structures. These frames are subjected live and dead weights. Also P- effects are under consideration as in pushover analysis. For time history analysis P-D effects have been taken into the account. Finite element procedure is employed for the modeling of the structures during the nonlinear dynamic time history analyses. Drain 2D has been used for nonlinear time history analysis and modeling. The model described for pushover analyses has been used for the time history analyses. Mass is assumed to be lumped at the joints.The frames are subjected to 50 earthquake ground motions, which are recorded during Anza (Horse Cany), Parkfield, Morgan Hill, Kocaeli, Coyota Lake, N. Palm Springs, Northridge, Santa Barbara, Imperial Valley, Cape Mendocino, Kobe, Central California, Lytle Creek, Whittier Narrows, Hollister Westmoreland, Landers, Livermor and Cape Mendocino earthquakes, for the nonlinear dynamic time history analyses. These data are from different site classes as A, B, C and D.The selected earthquake ground motions have different frequency contents and peak ground accelerations.The ground motion data are chosen from near-field region to evaluate the response of the frame structures in this region and comparison of them with pushover analyses results. The results of nonlinear time history analysis for 3, 5, 8 and15-story frame structures are presented in Figure 6. Pushover and nonlinear time history analyses results are compared to for specific natural period for four different frame structure and for each load distributions; rectangular, triangular and IBC (k=2).CONCLUSIONSAfter designing and detailing the reinforced concrete frame structures, a nonlinear pushover analysis and nonlinear dynamic time history analysis are carried out for evaluating the structural seismic response for the acceptance of load distribution for inelastic behavior. It is assumed for pushover analysis that seismic demands at the target displacement are approximately maximum seismic demands during the earthquake.According to Figures 2, 3, 4 and 5, for higher story frame structures, first yielding and shear failure of the columns is experienced at the larger story displacements and rectangular distribution always give the higher base shear-weight ratio comparing to other load distributions for the corresponding story displacement.As it is presented in Figure 6, nonlinear static pushover analyses for IBC (k=2), rectangular, and triangular load distribution and nonlinear time history analyses results for the chosen ground motion data (all of them are near-field data) are compared. Pushover curves do not match with nonlinear dynamic time history analysis results especially for higher story reinforced pushover analyses results for rectangular load distribution estimate maximum seismic demands during the given earthquakes more reasonable than the other load distributions, IBC (k=2), and triangular.REFERENCES1. ATC-40 (1996), “Seismic evaluation and Retrofit of Concrete Buildings”, Vol.1, Applied Technology Council, Redwood City, CA.2. FEMA 273 (1997). “NEHRP Guidelines for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency”, Washington D.C.3. IBC (2000) “International Building Code”.4. Prakash, V., Powell, G., Campbell, S. (1993), DRAIN 2D User Guide V 1.10, University of California at Berkeley, CA.5. Li, Y.R. (1996), “Non-Linear Time History And Pushover Analyses for Seismic Design and Evaluation” PhD Thesis, University of Texas, Austin, TX.6. Vision 2000 Committee (1995). Structural Engineering Association of California, CA. 89静力弹塑性分析法在侧向荷载分布方式下的评估研究Armagan KORKMAZ1, Ali SARI21访问学者,土木工程学院, 得克萨斯大学, 奥斯汀, TX 78712, PH: 512-232-9216; 2博士, 土木工程学院, 得克萨斯大学, 奥斯汀, TX 78712, PH: 512-232-9216; ali_摘要:这项研究的目的是通过弹塑性分析法和非线性时程分析法来评估框架结构的性能或多种荷载形式及自然周期的多样性。弹塑性分析法的荷载分布状态有三角形、IBC(k=2),和矩形。在这个研究中四种典型的钢筋混凝土框架结构被采用,它们分别有四种不同的自然周期。非线性时程分析法是计算地震的最好方法,但美国的FEMA-273容量震谱法和ATC-40位移系数法推荐使用静力弹塑性分析法。这篇论文将比较分别利用静力弹塑性分析法与非线性时程分析法分析所得到的结果。为了评估弹塑性分析法在三种不同荷载形式和四种自然周期下的结果,非线性时程分析法也被执行来对照。在不同地震下分布在全球的50个站点纪录了地面运动情况被用来做分析,通过比较静力弹塑性分析法和非线性时程分析法的结果来选择这种典型框架结构在特殊自然周期下最佳的荷载分布方式。关键词:静力弹塑性分析、非线性时程分析、荷载形式、抗弯矩框架前言一般的抗震设计中仅仅只有安全和碰撞是在地震设计规范中明确要求避免的,抗震设计一般基于结构在地震中的性能表现。这样在低的地震水平下就要求考虑结构的非弹性行为。FEMA-273和ATC-40采用静力弹塑性分析法而不是非线性时程分析,因为前者在抗震计算中能得到更精确度结果。在抗震计算的目的是:(a)、在经常发生的小震情况下避免非结构破坏;(b)、在偶尔发生的中震情况下避免结构破坏和最小限度的非结构破坏;(c)、在罕遇大震下不倒塌或产生严重破坏。结构设计要明确的在这三种情况下进行。这项研究的目的是通过弹塑性分析法和非线性时程分析法来评估框架结构的性能或多种荷载形式及自然周期的多样性。3、5、8和15层的四种框架结构被用来分析,分析中荷载分布状态选择三角形IBC(k=1),IBC(k=2)和矩形。其中k是与结构周期相关的系数,用来定义荷载竖向因素。这四种结构用非线性程序DRAIN-2D (Prakash, V., Powell, G., Campbell, S., 1993)来分析,并把其结果与记录的相应数据比较。静力弹塑性分析法和非线性时程分析法都被执行,这两种非线性分析方法的联系将被研究。在各种不同的地震运动下建筑物的性能将被检查,最后比较静力弹塑性分析法和非线性时程分析法的结果来选择这种典型框架结构在特殊自然周期下最佳的荷载分布方式。地表运动数据在这个研究中,50个不同的数据被用于非线性时程分析法中,在表1中给出。所有数据来自四个A、B、C、D四个等级不同地点,它们的横波速度分别是 750 m/s, 360m/s至750 m/s, 180 m/s至360 m/s, 180 m/s。这些数据选至发生在世界不同地方的毁灭性地震,其中地震的名称、数据源、记录名称、加速度峰值、有效期及过期类型都在表1中给出。地表加速度峰值大约在0.046g至0.395g,其中g为重力加速度。所有地表运动数据取至距离地面最大为20km的近地范围内。框架结构的描述有着典型截面和钢筋的3、5、8和15层的钢筋混凝土框架结构见图1,这些钢筋混凝土结构是按Turkish 规范设计。考虑结构所处环境为土质类型Z1、地震1区,设计为等级为1级,其中恒载、活载以及地震荷载在设计中已经被考虑。所有这些钢筋混凝土框架结构都有3跨,长8m,层高3m。柱子假定与地基固结,钢筋的屈服强度为22 kN/cm2 ,混凝土的抗压强度为1.6kN/cm2.3层框架结构的第一周期经计算为0.54 s ,结构中所有的框架梁截面为矩形,宽25 cm、高25cm,框架柱截面尺寸为30cmx30cm。5层框架结构的第一周期经计算为0.72 s ,框架梁截面为矩形,宽25 cm、高50cm,框架柱截面尺寸前三层为40cmx40cm,后两层为30cmx30cm。8层和15层的框架结构的周期分别为0.90 s和1.20s ,两者的框架梁截面为矩形,宽25 cm、高55cm。8层结构框架柱截面尺寸前五层为50cmx50cm,后三层为40cmx40cm,而15层结构框架柱截面尺寸前八层为80cmx80cm,后七层为60cmx60cm。框架结构的静力弹塑性分析法对于低等级的性能,为了估计其需求,就需要考虑结构的非弹性行为。静力弹塑性分析法可以用来识别地震的危险,并选择性能等级以此来设计性能目标。在静力弹塑性分析法中,以侧向荷载近似代表由层间产生的相关惯性力并使结构在这个侧向荷载作用下产生的位移大于地震设计中预期的位移(Li, Y.R., 1996)。这种分析方法提供了剪力与位移的置换关系并指出非弹性的界限和结构侧面负荷能力,而曲线斜率方面的改变表明了各有限元的屈服强度。静力弹塑性分析法的主要目的是决定结构的荷载数量和变形能力。这些信息都能够用于评价结构的整体性。在详细设计了钢筋混凝土框架结构后,就用静力弹塑性分析法评估结构的地震反应,为此电脑程序Drain 2D会被用到。有以下三种简化荷载形式:三角形IBC(k=1),IBC(k=2)和矩形,其中k是与结构周期相关的系数,用来定义荷载竖向因素。它们也会用于3、5、8和15层的钢筋混凝土框架结构的静力弹塑性分析。荷载标准的确定时基于设计参数中的惯性力的分布。简化的荷载布置方式如均布分布、三角形分布、IBC分布是最常
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。