1.3.1函数的基本质 单调.ppt_第1页
1.3.1函数的基本质 单调.ppt_第2页
1.3.1函数的基本质 单调.ppt_第3页
1.3.1函数的基本质 单调.ppt_第4页
1.3.1函数的基本质 单调.ppt_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1.3 函数的基本性质单调性,请观察函数y=x2与y=x3图象,回答下列问题:,1、当x0,+),x增大时,图(1)中的y值 ;图(2)中的y值 。 2、当x(,0),x增大时,图(1)中的y值 ;图(2)中的y值 。,增大,增大,增大,减小,3、分别指出图(1)、图(2)中,当x 0,+)和x(,0)时,函数图象是上升的还是下降的? 4、通过前面的讨论,你发现了什么?,结论:若一个函数在某个区间内图象是上升的,则函数值y随x的增大而增大,反之亦真; 若一个函数在某个区间内图象是下降的,则函数值y随x的增大而减小,反之亦真。,观察某城市一天24小时气温变化图,f (t),t0,24,问题:如何

2、描述气温随时间t的变化情况?,问题: 在区间4,14上,如何用数学符号语言来刻 画“随t的增大而增大”这一特征?,如图,研究函数f(t),t0,24的图象在区间4,14上的变化情况,在4,14上,取几个不同的输入值,例如t15,t26,t3 8,t410,得到相对应的输出值1,2,3,4在t1t2t3t4时,有1234,所以在4,14上,随t的增大而增大,取区间内n个输入值t1,t2,t3, tn,得到相对应的输出值1,2,3,n,在t1t2t3tn时,有123n,所以在区间4,14上,随t的增大而增大,在4,14上任取两个值t1,t2,只要t1t2,就有12,就可以说在区间4,14上,随t的

3、增大而增大,问题: 设函数yf(x)的定义域为A,区间IA,在区间I上,y随x的增大而增大,该如何用数学符号语言来刻画呢?,在4,14上内任取两个值t1,t2,只要t1t2,就有12,就可以说在区间4,14上,随t的增大而增大,函数yf(x)的定义域为A,区间IA,如果对于区间I内的任意两个值x1,x2, 当x1x2时,都有f(x1)f(x2), 那么就说函数y=f(x)在区间I上是单调增函数,区间I称为函数y=f(x)的单调增区间.,问题: 如何定义单调减函数和单调减区间呢?,函数yf(x)的定义域为A,区间I A,如果对于区间I内的任意两个值x1,x2 当x1x2时,都有f(x1)f(x2

4、), 那么就说函数y=f(x)在区间I上是单调减函数, 区间I称为函数y=f(x)的单调减区间.,1.函数yf(x),x 0,3的图象如图所示,区间0,3是该函数的单调增区间吗?,概念辨析,2.对于二次函数f(x)x2,因为1,2(,),当12时,f(1)f(2),所以函数f(x)x2在区间(,)上是单调增函数,3.已知函数yf(x)的定义域为0,),若对于任意的x20,都有f(x2)f(0),则函数yf(x)在区间0,)上是单调减函数,判断,设函数f(x)的定义域为I: 如果对于属于定义域I内某个区间上的任意两个自变量的值x1,x2, 当x1x2时,都有f(x1) f(x2),那么就说f(x

5、)在这个区间上是增函数,一、增函数,如果函数y=f(x)在某个区间是增函数或减函数,那么就说函数y=f(x)在这个区间具有(严格的)单调性,这一区间叫做y=f(x)的单调区间.,设函数f(x)的定义域为I: 如果对于属于定义域I内某个区间上的任意两个自变量的值x1,x2, 当x1x2时,都有f(x1) f(x2),那么就说f(x)在这个区间上是减函数,二、减函数,三、单调性与单调区间,请问: 在单调区间上增函数的图象是_, 减函数的图象是_. (填“上升的”或“下降的”),上升的,下降的,想一想 :如何从一个函数的图象来判断这个函数在定义域内的某个单调区间上是增函数还是减函数?,如果这个函数在

6、某个单调区间上的图象是上升的,那么它在这个单调区间上就是增函数;如果图象是下降的,那么它在这个单调区间上就是减函数。,1、增函数、减函数的三个特征:,(1)局部性:也就是说它肯定有一个区间。区间可以是整个定义域,也可以是其真子集,因此,我们说增函数、减函数时,必须指明它所在的区间。如y=x+1 (XZ)不具有单调性,(2)任意性:它的取值是在区间上的任意两个自变量,决不能理解为很多或无穷多个值。,(3)一致性,增函数:,f( ) f( ),减函数:,f( ) f( ),。,例1.下图是定义在 闭区间-5,5上的函数y=f(x)的图象,根据图象说出y=f(x)的单调区间,以及在每个单调区间上,

7、y=f(x)是增函数还是减函数?,解:函数y=f(x)的单调区间有-5,-2),-2,1),1,3),3,5, 其中y=f(x)在区间-5,-2),1,3)上是减函数, 在区间-2,1),3,5上是增函数.,例:证明函数f(x)= x3在R上是增函数.,证明(设元)设x1,x2是定义域R上任意两个实数, 且x10 所以 f(x1)-f(x2)0 (定论)所以f(x)= x3在R上是增函 数.,探究: 画出反比例函数 的图象。 (1)这个函数的定义域I是什么? (2)它在定义域I上的单调性是怎样的?证明 你的结论。,通过观察图象,先对函数是否具有某种性质做 出猜想,然后通过逻辑推理,证明这种猜想的正确 性,是研究函数性质的一种常用方法。,证明:,设x1,x2(0,+),且x1x2,则,f(x)在定义域上是减函数吗?,取x1=-1,x2=1f(-1)=-1f(1)=1-11f(-1)f(1),用定义证明函数的单调性的步骤:,(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论