版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、定积分的概念,求由连续曲线y=f(x)对应的曲边梯形面积的方法,(2)以直代曲:任取xixi-1, xi,第i个小曲边梯形的面积用高为f(xi)而宽为Dx的小矩形面积 f(xi)Dx近似之。,(4)取极限:,所求曲边梯形的面积S为,(3)求n个小矩形面积的和作为曲边梯形面积S的近似值:,xi,xi+1,xi,(1)分割:在区间0,1上等间隔地插入n-1个点,将它等分成 n个小区间: 每个小区间宽度x,一、定积分的定义,如果当n时,S 的无限接近某个常数,,这个常数为函数f(x)在区间a, b上的定积分,记作,从求曲边梯形面积S的过程中可以看出,通过“四步曲”: 分割-近似代替-求和-取极限,定
2、积分的定义:,定积分的相关名称: 叫做积分号, f(x) 叫做被积函数, f(x)dx 叫做被积表达式, x 叫做积分变量, a 叫做积分下限, b 叫做积分上限, a, b 叫做积分区间。,按定积分的定义,有 (1) 由连续曲线y=f(x) (f(x)0) ,直线x=a、x=b及x轴所围成的曲边梯形的面积为,(2) 设物体运动的速度v=v(t),则此物体在时间区间a, b内运动的距离s为,定积分的定义:,1定积分的值与积分变量用什么字母表示无关,即有,2规定:,注:,(2)定积分的几何意义:,x=a、x=b与 x轴所围成的曲边梯形的面积。,当f(x)0时,由yf (x)、xa、xb 与 x
3、轴所围成的曲边梯形位于 x 轴的下方,,=-S,上述曲边梯形面积的负值。,定积分的几何意义:,=-S,三: 定积分的基本性质,性质1.,性质2.,三: 定积分的基本性质,定积分关于积分区间具有可加性,性质3.,性质 3 不论a,b,c的相对位置如何都有,例1:利用定积分的定义,计算 的值.,例2.用定积分表示图中四个阴影部分面积,解:,0,0,0,0,a,y,x,y,x,y,x,y,x,f(x)=x2,f(x)=x2,-1,2,f(x)=1,a,b,-1,2,f(x)=(x-1)2-1,解:,0,0,0,0,a,y,x,y,x,y,x,y,x,-1,2,a,b,-1,2,f(x)=x2,f(x)=x2,f(x)=1,f(x)=(x-1)2-1,解:,0,0,0,0,a,y,x,y,x,y,x,y,x,-1,2,a,b,-1,2,f(x)=x2,f(x)=x2,f(x)=1,f(x)=(x-1)2-1,解:,0,0,0,0,a,y,x,y,x,y,x,y,x,-1,2,a,b,-1,2,f(x)=x2,f(x)=x2,f(x)=1,f(x)=(x-1)2-1,例3:,解:,x,y,f(x)=sinx,1,-1,利用定积分的几何意义,判断下列定积分值的正、负号。,利用定积分的几何意义,说明下列各式。 成立:,1),2).,1),2).,练习:,试用定积分表示下列各图中影阴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025 年大学光学(光学研究)试题及答案
- 黑龙江省哈尔滨市虹桥中学2025-2026学年八年级上学期12月月考生物试题(含答案)
- 2026年山西工程职业学院单招职业技能考试模拟测试卷附答案解析
- 电气安全员面试题含答案
- 2025年智能制造与数字化转型考核试题及答案
- 华为高级工程师面试题及答案详解
- 水产品养殖基地合作运营合同
- 工程量清单编制员的绩效考核与评价
- 2025年南通市崇川区区属国有企业下属控股公司公开招聘工作人员招聘备考题库及完整答案详解一套
- 2025年桂林市临桂区公开招聘区管国有企业领导人员备考题库及完整答案详解一套
- 2025版离婚协议书样本:婚姻关系解除与子女抚养安排
- 香蕉糖度实时检测-洞察及研究
- 政治重点人管理机制解析
- 电子档案管理系统基础知识
- 2025年农村宅基地买卖合同书样本
- 农产品产地冷藏保鲜设施安全生产隐患排查整治表
- 元器件基础知识培训课件
- 评标技术专家注意事项
- 糖尿病床旁护理查房
- 【MOOC期末】《大学物理(力学、电磁学)》(东北大学)期末考试慕课答案
- DB32∕T 5085-2025 无机涂料应用技术规程
评论
0/150
提交评论