CADCAM技术在摩托车护片锻模设计中的应用机械设计带图纸文档
收藏
资源目录
压缩包内文档预览:(预览前20页/共21页)
编号:92352078
类型:共享资源
大小:8.81MB
格式:ZIP
上传时间:2020-08-15
上传人:QQ24****1780
认证信息
个人认证
王**(实名认证)
浙江
IP属地:浙江
15
积分
- 关 键 词:
-
CADCAM
技术
摩托车
锻模
设计
中的
应用
机械设计
图纸
文档
- 资源描述:
-
CADCAM技术在摩托车护片锻模设计中的应用机械设计带图纸文档,CADCAM,技术,摩托车,锻模,设计,中的,应用,机械设计,图纸,文档
- 内容简介:
-
专 业 课 程 设 计 指 导 书 专 业: 机械工程专业方向: 机械制造及其自动化机电学院机械工程系 年12月目 录第一部分 机床主传动系统设计1第一章 概述1第二章 机械制造装备课程设计的方法步骤和要求321 分析研究题目、进行运动设计322 主要零件的计算与初算423 结构设计绘制部件装配草图724 验算主要零件825 绘制正式部件装配图1326 装配图的尺寸标注1427 整理设计内容,编写设计计算说明书16附 录18第二部分 数控工作台机械部分设计22第一章 概述22第二章 工作台结构及参数设计24第三章 步进电机的选择28参考资料30设计说明书书写要求3132第一部分 机床主传动系统设计第一章 概述一. 机械制造装备课程设计的目的机械制造装备课程设计是在学生学完机械制造装备设计课及其它先行课程之后进行的实践性教学环节,是学生进行设计工作的基本训练。目的在于:1、 通过机床主传动系统的机械变速机构设计,使学生树立正确的设计思想和掌握机床设计的基本方法;2、 巩固和加深所学理论知识,扩大知识面,并运用所学理论分析和解决设计工作中的具体问题;3、 通过机械制造装备课程设计,使学生在拟订机床主传动机构、机床的构造设计、各种方案的设计、零件的计算、编写技术文件和设计思想的表达等方面,得到综合性的基本训练;4、 熟悉有关标准、手册和参考资料的运用,以培养具有初步的结构分析和结构设计计算的能力。二、机械制造装备课程设计的内容和工作量为满足教学要求,达到上述目的,机械制造装备课程设计的题目一般拟订为通用机床主传动系统的变速箱部件设计。学生应在规定时间内,独立完成下列计算工作量:1、运动设计 学生根据设计任务书所给定的参数和设计要求,在明确所设计机床用途及主要技术性能的基础上,拟订结构网、转速图,确定齿轮齿数,并核算主轴转速误差,画出传动系统图。2、动力设计 根据给定电动机功率,计算主要零件的尺寸,选择材料,验算主要传动件的应力、变形以及寿命等,是否在允许的范围内。3、机构设计 将运动设计所确定的机床主传动系统(其中包括传动轴系、变速机构、主轴组件、换向、制动、操纵机构、润滑密封等)布置在展开图和截面图内,一般要完成零号图纸1张。4、 编写设计计算说明书一份。详细的设计内容和工作量可见和指导教师的具体布置。 三、机械制造装备课程设计的方法步骤和要求(略,详见本指导书第二章。)四、学时分配、计划进度安排 本次课程设计集中安排三周。根据设计工作程度及对学生的要求,计划进度大致安排如下: 1、理解题目,阅读 指导书 ,拟订总体方案,进行运动设计 2天 2、动力设计主要零件的计算和初算 5天 3、结构设计绘制装配草图 2天 4、验算主要零件 1天 5、绘制正式装配图 2天 6、整理、编写设计计算说明书 2天 7、答辩 五、机械制造装备课程设计成绩考核机械制造装备课程设计结束后,由教研室指派有关教师对学生课程设计进行全面考核,重点考核以下几个方面:1、 工作态度、设计中的表现;2、 刻苦钻研精神,独立工作能力,综合运用所学知识能力;3、 设计图纸和说明书质量;4、 答辩时回答问题情况。综合以上情况,评定学生课程设计成绩。成绩分优、良、中、及格、不及格五级。 第二章 机械制造装备课程设计的方法步骤和要求21 分析研究题目、进行运动设计一理解题目学生在接受机械制造装备课程设计题目之后,应仔细阅读机械制造装备课程设计任务书,了解机课程设计的目的、内容、设计步骤和要求。然后在教师指导下开展设计工作。要理解给定的题目,对设计参数进行分析、研究;明确所设计机床的用途和主要技术性能。二拟订主传动系统总体结构方案根据设计题目中所提出的要求及所设计机床的用途,主要技术性能,并参考同类型机床,拟定主传动系统总体结构方案(及其理由),大致包括:传动形式、变速方式、换向及开停机构、制动机构、润滑装置,操纵机构的选择;变速箱的安装定位方式的选择;电机轴与第轴的联接方式等等.三运动设计关于运动参数,已经统一给定,学生不必花费太多时间去研究,但应该明确参数中 的极限转速值nmin和nmax的确定方法,变速级数Z、 值的大小对机床性能的影响,根据给定的运动参数,完成下列工作:1、依据给定参数(nmin、 nmax、Z、),查表确定主轴的各级标准转速,有时要考虑混合公比。2、列出各种结构和结构网,根据有关原则,通过分析,比较,确定其中最佳方案。3、设计转速图,根据拟订转速图的原则,确定速比的绝对值,画出转速图。4、确定齿轮齿数,用计算或查表法确定齿轮齿数.在确定齿数和Sz时应注意:1)控制齿数和Sz =70100,Szmax 120,最小齿轮齿数Zmin 18 20;2)小齿轮齿根和孔壁或键槽处的壁厚a(1.52) m,或Zmin6.5+2T/m,m为齿轮模数,T轴线到键槽的高度.3)保证两轴承孔之间有一定的壁厚a23 m,或Sz2 (D1+D2)/2+a /m,D1,D2分别为相邻两轴承外径. 4) 应保证轴间有足够的中心距,使车床:轴上齿轮不碰轴上摩檫离合器,铣床:不碰电磁制动器.5) 在三联滑移齿轮块中,最大齿轮齿数与其相邻大齿轮齿数之差应4,以保证滑动时顺利通过,不碰撞。6) 选齿数较大的一个作公用齿轮.齿轮齿数确定后,标注在转速图中相应的传动副连线上。5、核算主轴转速误差,齿轮齿数确定后,主轴的各级实际转速即确定,它与主轴的标准转速总会产生一定的误差,应进行核算。误差一般不应该超过10(-1)%,即应满足:n实n标/ n标10(1)%一般将转速误差的核算列成如下的表格形式:计算式n实n标误差允许值10(1)%结论6、绘制传动系统图1)轴,齿轮,离合器,制动器的排列位置,编号应与将要绘制的展开图相一致。2)标写出电动机的型号、功率、转速、皮带轮直径D1、D2;皮带根数要画上;标写轴号、齿轮的齿数模数。3) 展开图的轮廓线、传动件和执行件的画法要符合制图标准规定。22 主要零件的计算与初算 初步计算主要零件的目的,是为了大致确定传动件零件的主要尺寸,如皮带轮直径,齿轮模数,传动轴直径和主轴轴径等,以便绘制主轴箱的轴系展开图。一. 皮带设计皮带设计的已知条件是:电机功率Nd,转速比i,电机转速nd,计算带轮直径D1、D2,皮带的型号,根数Z,压轴力Q等。设计原则是不打滑,有足够的寿命,传递最大功率,具体设计方法步骤可参阅1p68表5.24, p71表5.210。二齿轮模数的初算在计算齿轮模数和传动轴直径时需要用到其计算转速nj和传递功率Ni,因此应先将各种传动轴和有关齿轮的计算转速nj和各传动轴所传递的功率Ni确定下来,以备计算中使用。1) 只算定比、各变速组中小齿轮的模数。2) 选定标准模数,考虑种类少一些,取一种或两种。首先确定主轴的计算转速,再根据主轴的计算转速图上查取各传动轴和各齿轮的计算转速。各轴和齿轮传递的功率Ni=N总 , 总由电机到该传动件各传动副的效率相乘,但不乘入该轴承的效率。效率值见1p4表5.15。一般同一变速组中的齿轮取同一模数,选择负荷最重的小齿轮按简化的接触疲劳强度公式进行初算:式中:mj按接触疲劳强度计算的齿轮模数, mm Nd驱动电机功率, Kw nj计算齿轮的计算转速, rpm i大齿轮齿数与小齿轮齿数之比,i1;Z1小齿轮齿数;m齿宽系数; m=/ (B为齿宽,m为模数)一般m = 610;j许用接触应力,当 45#调质(T235) j =600Mpa (N/mm2) 45#整体淬火(C42) 1100 (N/mm2) 45#高频淬火(G54) 1370 (N/mm2) 40Cr调质(T265) 650 (N/mm2) 40Cr整体淬火(C48) 1250 (N/mm2) 40Cr高频淬火(G52) 1370 (N/mm2)齿轮模数初算后,根据齿轮精度等级所允许的线速度(见1p225表5.452),要核算高速传动齿轮的线速度( )是否超过允许值。三.传动轴直径的初算 传动轴的直径可按下列扭转刚度公式进行计算:或 式中: d危险断面处轴的直径,当有一个键槽时,可增大45%,当有两个键槽时,可增大710% ;花键轴内径可减小7%,计算后要圆整到标准直径系列,花键轴系列标准见1P554表5.817; Tn该轴传递的额定扭矩, N.mm ; Ni该轴传递的功率,Kw nj该轴的计算转速,rpm 该轴每米长度上允许的扭转角; 一般传动轴=0.51; 要求较高的轴 0.10.5o 要求较低的轴 1.52o计算传动轴直径时,尺寸相接近的尽量取一致,以便于加工轴和孔,统一刀具和量具。一般将计算结果列成表格形式,如:轴号Ninjd初d取 花键轴尺寸 备注四. 主轴轴径的确定对通用机床的主轴尺寸参数多由结构上的需要而定,故主轴前轴颈的尺寸按下表所列的统计数据确定。通用机床主轴前轴颈尺寸(mm)机床 主轴的驱动功率(KW)2.84车床70907010595130铣床6090609075100普通车床主轴前轴颈的直径D1,后轴颈的直径D2及内孔直径d可按统计公式酌定:D1=0.2Dmax15 (mm)D2=(0.70.85)D1 (mm)d=0.1Dmax10 (mm)式中: Dmax最大加工直径,(mm) 由于初步计算是在绘制装配图之前进行,零件的尺寸、形状和位置尚未确定,在绘制正式装配图过程中变化也比较大。因此,各零件尺寸的初算,不详细计算,待装配图绘制之后,还需仔细验算。所以,零件尺寸的初算不用花费过多时间,但齿轮模数计算一定要正确,必要时可以结合类比法确定。23 结构设计绘制部件装配草图 绘制部件装配草图的目的,是大致确定变速箱部件中各主要传动件(如齿轮、轴、轴承、离合器和箱体等)的轮廓尺寸、形状和相对尺寸等。部件装配草图是在主要零件尺寸初算的基础上绘制的,又是作为校核验算零件尺寸的依据、草图绘制不必过分细致,但部件中各主要零件要全,尺寸要准确,布局要合理。 装配草图的设计依据是已确定的主传动系统总体结构方案;传动系统图;零件的计算与初算;参考同类型机床的装配图。一般绘制成1:1的展开图一张,M1:2的截面图一张(主要用于表示轴的空间位置和部分操纵机构)。部件装配草图的画法,可以参考同类型机床的装配图,布置齿轮的轴向位置,研究齿轮的排列方式.如果需要限制轴向尺寸,可采用公用齿轮或齿轮交替布置,或增加定比传动机构。要注意滑移齿轮要有足够的轴向空间,保证滑移齿轮完全脱开后,才进入新的啮合。传动轴及轴上零件的轴向定位方式要简单可靠,又要便于装拆和调整等。根据主轴组件设计的理论知识,参考结构图册或同类型机床的结构,选择合理的主轴组件的结构,包括轴承类型、配置与调整、主轴前端结构(可参考附录3) 、主轴的轴向定位方式等。考虑问题要全面,除传动机构、变速机构外,尚须注意离合器、制动器、操纵机构和润滑密封装置等,都要统盘考虑,选择的形式、布局等要结合截面(或剖视)图,注意空间位置是否会干涉或与移动件相碰撞。草图绘制完毕后,要请指导教师审阅。24 验算主要零件 根据部件装配图所确定的零件尺寸和各零件间的相互位置关系,分析其受力状态,作用力的大小、方向和着力点位置等,对主要零件进行比较精确的验算。为了节省时间减少重复的计算工作,可由指导教师指定验算的零件和验算内容。但学生应明确这些零件一般都是工作情况严重、支承载荷较大。验算时要着重掌握对问题的分析和计算的方法。当验算结果不能满足性能要求时,可以改变零件材料、热处理方法或修改部分结构,甚至有时要改变原设计方案。一.齿轮模数验算一般按接触疲劳强度和弯曲疲劳强度验算,选取某轴上承受载核最大的齿轮,即同材料、同模数齿轮中齿数最少、齿宽最小的齿轮进行验算。验算的已知条件为一对啮合的齿轮齿数Z1、Z2,模数m,齿轮传递的功率N,齿轮的精度等级(如88 7 GB/T10095.12001),齿轮材料为45或40Cr,进行高频淬火G52,转速图。其验算公式为1P258表5.482,表5.483;、 按接触疲劳强度验算、 按弯曲疲劳强度验算 式中 ,、0分别为按接触疲劳强度和按弯曲疲劳强度计算所允许传递的最大功率,Kw;、0分别为在基本条件下,按接触疲劳强度和按弯曲疲劳强度计算的Z1、m所允许传递的功率,Kw;0由1P254表5.480查取;0由1P254表5.481查取。这里基本条件是指:(1)齿轮材料为45钢,调质T235; (2) 非变位直齿圆柱齿轮; (3)齿数之比i=1; (4) 10 (5)小齿轮的计算转数n=1000rpm; (6) 加工装配精确; (7) 寿命系数 。凡不符合上述基本条件者,在实际使用时 ,就要按上述两公式,通过相应的系数进行折算。i大齿轮与小齿轮齿数之比, 尺宽系数 nj该齿轮的计算转数,rpm; K材料的弹性模量,由1P259表5.484;Kcj、Kcw分别为材料的接触和弯曲性能系数,由1P259表5.484。 K1载荷集中系数,由1P259表5.487。 K2动载荷系数,由1P260表5.487。 Ksj、Ksw寿命系数,决定因素较多,计算比较复杂,详见1P259(7)。经计算,在此给定:(车床)(铣床) 啮合角影响系数,非变位齿轮 Ksw0.85啮合角影响系数,非变位齿轮;齿形系数,非变位外啮合直齿圆柱齿轮; N齿轮实际传递的功率,Kw。二传动轴刚度验算选择一根受载最重的传动轴(一般是主轴前一根传动轴,或指导教师制定),核算其装齿轮处产生的挠度y和装轴承处产生的倾角、为什么要进行传动轴刚度的核算?(略,详见1P351:六),验算步骤如下:1.计算轴的平均直径,画出计算简图 机床上等径轴较少,当轴的直径相差不大时,可把轴看作等径轴,采用平均直径(各直径之和除以直径数)来进行计算,即阶梯轴 d平花键轴 d平(d外d内)/2一般常将轴简化为集中载荷下的简支梁,选择该轴上转速最低,受力最大的大齿轮(被动)传入该轴,选择该轴上最小的齿轮(主动)传出,这两个齿轮处的受力为载荷点进行计算。其受力简图为图一。2.计算该轴传递的扭矩Tn; 式中 Ni该轴传递的功率,Kw; nj该轴的计算转速,rpm;3.求作用在装齿轮处B点的力切向力 径向力 式中,d齿轮的分度圆直径,d=mZ;压力角,标准齿轮200 ;摩擦角,4.求作用在装齿轮处C点的力若传入轴、该轴、传出轴三根轴在空间位置的轴心连线夹角小于150 ,可以认为三轴心在同一直线上(如铣床),按照上面求B点力的方法,求出C点力即可。若三轴心不在同一直线上(夹角大于150时)需进行坐标转换,将后一对齿轮(C点)啮合力(、)投影到前一个坐标(关于X、Y的坐标)之后,在进行挠度计算,车床大都属于这种情况。如下图所示:5.计算装齿轮处的挠度应用1P255表5.816公式,由表5.817中查取轴的惯性矩I,E=2.1100kgf/cm2 2.1103N/mm2,在计算中要注意单位的统一,以防出现差错,力的单位用N,长度单位用mm。另外在应用表5.816中公式进行计算时一定要注意计算简图中a、b、x值的相应改变。一般将计算结果列成表格形式(表中给出所有公式):第( )轴装齿轮B、C处挠度计算位置坐标方向由作用在B点的力产生的挠度由作用在C点的力产生的挠度各坐标迭加合成挠度y允许值y结论BX载荷点公式XBB任意点a段内公式XBCXB= XBB XBCyB=(XB2YB2)0.5表5.814合格YYBBYBCYB= YBB YBCCX任意点b段内公式XCB载荷点公式XCCXC= XCB XCCyC=(XC2YC2)0.5表5.814否YYCBYCCYC= YCB YCC第( )轴装轴承处(A、D)的倾角计算位置坐标方向由作用在B点的力产生的倾角由作用在C点的力产生的倾角各坐标迭加合成倾角允许值结论AX左支承公式XB左支承公式XCXA =XB XCA=(XA2YA2)0.5表5.814合格YYBYCYA =YB YCDX右支承公式XB右支承公式XCXD =XB YCD=(XD2YD2)0.5表5.814否YYBYCYD =YB YC6.计算轴承处的倾角应用表5.8-16公式进行计算,在计算中同样应注意计算简图中a、b值相应改变。一般将计算结果列成表格形式(表中给出所用公式见P18表格)。三、轴承寿命验算轴承受循环接触应力后产生疲劳剥落(龟裂),多长时间才能剥落,即寿命。寿命是指轴承的内圈、外圈、滚动体三者中。其一出现疲劳剥落即为到寿命,寿命以小时(h)数表示之。应满足 LhT式中,Lh额定寿命。hT工作期限,hT的确定机床大修期为8年,每年工作300天,按每天2班制,每班8小时,则总时数为 83102838000h实际机动时间为1050,则 T30000(0.40.5)1500020000h通常为设计方便,更换不难,取T=10000h即可额定寿命的计算 式中,n轴承(即轴)的计算转速,rpm; 寿命指数,球轴承3,滚子轴承10/3; C额定动负荷,N,查1P670,十四; P当量动负荷,N, P=XFr+YFa式中,Fr径向负荷,N,由求支反力解出; Fa轴向负荷,N; X径向系数,由1P584表5.918; Y轴向系数,由1P584表5.918;轴承寿命是个统计数,大多数(90以上)轴承的实际寿命比它的统计寿命长,如验算结果额定寿命达不到工作期限(相差不太大时),仍可使用,采用提前一、二年更换的办法亦可。25 绘制正式部件装配图根据草图验算的结果进行必要的修改,把该表示出来的零件清晰正确地绘制在正式装配图上。绘制正式装配图时机械制造装备课程设计的重要阶段,是前阶段的工作总结,是设计思想的表达。部件装配图包括展开图和剖面图:一、设计部件装配图时,学生应对下列问题进行全面分析和比较1、选用零件类型、结构、主要尺寸、材料、热处理和该零件在部件中的固定方法等。这些零件包括:齿轮、轴承、离合器、制动器、换向机构、润滑密封装置、各类轴、轴套和箱体等。2、确定部件中各零件的位置、相对位置关系及主要尺寸(定位尺寸、移动件的行程极限位置尺寸、主要配合尺寸等)、联接方法、配合性质以及滚动轴承预紧及其精度选择等。3、零件设计应尽可能遵守标准化、通用化的原则,凡是能用标准件的一定采用标准件,如螺钉、螺帽、轴承、键、垫圈、弹簧、挡圈、销钉、法兰盘等。4、要注意变速箱部件在机床上的定位,安装方法及其加工基面;各传动轴的轴向定位及其间隙调整方法;运动件的润滑及其润滑系统设计;主轴组件的轴向定位、间隙调整、润滑方式;皮带轮的卸载装置;摩擦离合器的调整、受力分析和设计原则等。二、绘制装配图的方法步骤1、在画装配图之前,按部件装配草图的轮廓和结构布置,要统盘考虑全面安排,土面布局要匀称。一般采用1:1的比例,必要时可放大或缩小。然后按传动轴的先后顺序,画出各轴心线的距离,以及各传动轴上的齿轮位置。2、绘制展开图时要结合剖面图,要结合考虑操纵机构、各轴的空间位置、制动器、换向机构等。当然操纵机构等在总布置前应确定方案,由于时间关系,在课程设计中,操纵机构根据情况由指导教师研究确定其形式,学生不必花过多的时间。零件的位置及其相互关系,一般由装配图的“内部向外”画,同时又要考虑装配图的外观轮廓由“外向里”排列。车床主轴箱长、宽、高尺寸比例以6:5:4为宜。3、适当考虑加工工艺性,要注意部件装配工艺的可能性,特别是主轴和其它较长的传动轴。有时就是由于零件的结构工艺性不好或零件组装时无法安装,不得不改变原设计方案。还要注意有调整间隙的组件(如滚动轴承、摩擦离合器和制动器等)要调整方便,易损件容易更换等。4、部件装配图的底图(或微机草图)绘制完成后,应请指导教师审核,方可加深(或出图)。26 装配图的尺寸标注由于设计时间所限,并减少重复工作,在对装配图进行尺寸标注时,可根据指导教师的要求,选择一些尺寸进行标注。这些尺寸大体包括:部件的外形尺寸;性能尺寸;主要联系尺寸;移动件的极限位置尺寸;主要零件间的配合尺寸等,现分别叙述如下:一主要尺寸标注1、外形尺寸:主轴箱部件长、宽、高尺寸;2、性能尺寸:车床主轴中心高HD/2(25);3、主要联系尺寸:1) 车床主轴中心线和床身对称线距离一般为912;2) 车床中心至主轴箱前面的距离;3) 车床主轴前端锥孔按标准莫氏锥度;4) 铣床主轴中心线至横梁底面距离150;5) 铣床主轴前锥孔锥度7:24,主轴前端外径和孔径为:外径 101.6h5,孔径 57.15外径 88.882h5,孔径 44.456)主轴或一根传动轴的轴向尺寸(成链)4、移动件的轴向位置尺寸:1) 滑移齿轮的极限位置尺寸;2) 拨叉极限摆角(铣床)。5、中心距尺寸:公差按标准侧隙,由1P236表5.460。二主要配合尺寸的标注1、 主轴(滚动)轴承配合:1)三支承的主轴主件车床:前支承(D3182100型)外环与孔配合K6, 中间支承 外环与孔J6,内环与轴径K5, 后支承 外环与孔J7,内环与轴径K6铣床:前支承 外环与孔K6,内环与轴径n6, 中间支承 外环与孔K6,内环与轴径js6, 后支承 外环与孔J7,内环与轴径js6.2)双支承的主轴组件 车床:前支承(D3182100型)外环与孔K7, 后支承 外环与孔J6,内环与轴径k5。2、 传动轴承配合:外环与箱体孔J7,内环与轴径k6。3、 花键轴的配合(例如):1)、滑动:638H7/f732H12b1212D9f92)、固定:638H12b1212D9f94、 用键传递扭矩时,轴与孔的配合,如80H7/k65、 滑块与拨叉的配合,如12H9/f9三装配图中零件的标注方法对上述尺寸进行标注之后,应对全部基本件进行编号。标准件、通用件和借用件,可只标注其标准代号、规格和数量,而不编排其序号和代号。在编号、标注时应注意以下几点:对上述尺寸进行标注之后,应对全部基本件进行编号。标准件、通用件和借用件,可只标注其标准代号、规格和数量,而不编排其序号或代号。在编号、标注时应注意以下几点:1、 专用件、标准件要分开标注;2、 件号按顺序(逆)时针方向依次标注;3、 件号引线不能交叉。最后画出标题栏和零件明细表(明细表可附在说明书中)。 27 整理设计内容,编写设计计算说明书部件装配图加深之后,仍须对全部设计图纸进行全面仔细检查,如果发现有错误或遗漏,要及时修改或补充。机床课程设计计算说明书,是在整个设计过程中逐步积累而成,平时要注意对计算草稿、方案选取理由、公式系数查找资料的出处、要及时整理记录下来,以免在整理说明书时,重新查找,设计完成后,只是最后稍加整理、修改和编写未完成部分,最后装订成册,附上机床传动系统图和零件明细表。说明书的编写要仔细认真,叙述清楚,说明简练、文理通顺、书写工整,字数在8千1万字左右,一般不应少于20页。在编写时,具体格式顺序要求大致如下: 第1页 目录 第2页 机床课程设计任务书 第3页 设计计算内容说明包括:一、 机床用途及主要技术性能二、 变速箱总体结构方案的拟定三、 运动设计四、 主要零件的设计与计算五、 结构设计因结构设计的主要内容是反映在装配图中,在此可主要说明以下方面的内容:1、箱体长、宽、高轮廓尺寸及有关零件间相互位置尺寸的确定与计算。2、对操纵机构的设计说明:1) 车床应验算在单边拨动时,是否满足不自锁的条件;2) 铣床操纵机构草图的有关计算和说明,包括:a) 转速排列表及对应的转速图;b) 操纵原理图(杠杆比);c) 凸轮草图。3) 轴转速标牌(列表说明)4) 在结构设计方面其它需要说明的问题等。六、 主要零件验算七、 本设计优缺点分析及改进意见八、 零件明细表1、专用件明细表件 号名 称件 数材 料备 注2、标准件明细表规格代号名称件数标准号备注 九. 主要参考资料1 机床设计手册(2上)2 金属切削机床设计3 金属切削机床概论4 机械零件设计手册5 机床设计图册6 CA6140主轴箱装配图X62W主传动系统装配图附 录1、 标准锥度 锥度K为锥体上两横剖面与两剖面之间长度之比直径之比: K(Dd)/l2tg锥角2的一半称为圆锥斜角常用的专用标准锥度锥角K圆锥角2圆锥斜角标 记1:41:41:121:121:151 ;151:201:207:247: 24 2、 莫氏锥度莫氏锥度号大端名义直径锥度圆锥角2431.2671:19.2540.05194544.3991:190020.05263663.348 1:19.1800.052143、主轴端部件标准尺寸卡口型主轴端部的互换性尺寸国际标准 I S 7021975机床主轴端部与花盘互换性尺寸第三部分;卡口型1) 应用范围本国际标准规定了卡口型车床主轴部和相应花盘的互换性尺寸。ISO 702/III1975号数尺寸34568111520D53.97563.51382.563106.375139.719196.869285.775412.775公差0.008 00.008 0 0.010 00.010 00.012 00.014 00.016 00.620 0D7585104.8133.4171.4235330.2463.6D102112135170220290400540d2121212329364343DH8/h814.2515.919.0523.828.634.941.3d8.410.510.51313d10.410.410.413.516.516.51919E1111131416181921F1620222528354248G5556888H1010101112131515W0.30.3注:未注公差的尺寸的一般公差:0.4mm注:“A”型和“凸轮锁紧”型分别见第一部分和第二部分。2)互换性尺寸2.1 主轴端部铣床主轴端部(内孔锥度7:24)尺寸ISO 推荐标准 R 297 7:24 刀柄锥度1) 序言 下列表格涉及了一些7:24锥度,一方面涉及主轴端部。另一方面涉及刀柄。这种锥度主要是为了铣床主轴端部和相应的刀柄设计,因此,希望制定一个更全面的关于“带7:24锥度的铣床主轴端部”的ISO推荐标准。2)互换性 在螺纹方面,根据螺纹的型式(具有标准螺纹的公制螺纹M或统一标准粗牙螺纹UNC),本ISO推荐标准规定了两种完全不同型式的产品。 为了区别这两种型式,在零件上应打上相应的螺纹标记。每个国家的标准组织可在其国家标准中任意采用其中一种螺纹型式。 以公制尺寸或英制尺寸制造的产品,其他尺寸虽然不完全相同,但完全是可互换的。如果在国家标准中规定验收条件,则应明确规定是按英制尺寸还是按公制尺寸验收产品。3) 主轴端部7:24锥度附录43 铣床主轴端部尺寸(内孔锥度7:24)主轴端部(内孔锥度7:24)尺寸 mm名称N0.30N0.40N0.45N0.50N0.55N0.60D 31.75044045057.15069.85088.900107D h69.93288.882101.6128.570152.4221d H1217.425.332.439.650.460d min171721272735L min 73100120140178220g M12M12M12M16M20M20a min12.51618192538f 5466.780101.6120.6177m min 12.51618192538n max889.512.512.5120/2 min16.52330364861B 15.915.91925.425.425c min889.512.512.512k max16.519.519.526.526.545Z 0.40.40V 0.030.030.030.040.040注: D1基本尺寸。 g1螺纹直径,或者是具有标准螺距的公制螺纹M,或者是明确标明的统一标准粗牙螺纹U(以时为单位的尺寸)。在每种情况下,零件上都应打上适当的M或UNC标记。 紧固刀具用螺孔的位置公差(从理论位置上最大径向偏移)。N0.30、N0.40和N0. 0.75mm;N0.50、N0.55和N0.60为0.100。 拨块在其槽内的装配用M6/h5配合。V表示拨块b1的允许偏心距:即拨块中心平面与主部轴心线的距离。 e)z1=从与定位面相重合的公称位置至量规夹面D1位置的最大允许,允许在定位面两频。第二部分 数控工作台机械部分设计第一章 概述一、课程设计的目的 本课程设计的目的在于培养学生对典型机电一体化产品机械结构的设计能力和对机电伺服系统的设计能力,在学习有关专业课程设计的基础上,进行机电系统设计的初等训练,掌握手册、标准、规范等资料的使用方法,培养分析问题和解决问题的能力,为以后的毕业设计打下良好的基础.二、任务书1. 设计题目:XY双坐标联动数控工作台设计2. 技术数据按有关技术数据分组如下:组号工作台长 宽 (mm)工作台工作重量 ( N )139029018002400300200034103102300442032025005430330280064403003000745031033008420330350094303504000104004005000工作台行程: X=60100mmY=5080mm脉冲当量:0.050.08mm/P3. 设计要求1) 工作台进给运动采用滚珠丝杠螺旋传动.2) 滚珠丝杠支承方式:双推简支型.3) 驱动电机为反应式步进电机.4) 步进电机与滚珠丝杠间采用齿轮降速,要求消除齿轮传动间隙.4. 工作量1) 零号装配图一张.2) 设计说明书20页以上.三、设计进度安排 本课程设计进行一周,学时分配及进度安排如下:1. 理解题目:拟定总体方案,进行运动设计、动力设计、零件的计算及初算.(2天)2. 结构设计草图、编写设计计算书.(1天)3. 画正式图、标注尺寸、配合、件号.(1天)4. 答辩.(1天)四、成绩考核方法对参加课程设计的学生进行全面考核,重点考核以下四个方面:1. 设计图纸、说明书的质量.2. 独立工作能力、综合运用知识的能力.3. 平时的工作态度、设计中的表现.4. 答辩时回答问题情况.最后成绩由答辩小组综合以上情况给出,分优、良、中、及格、不及格五个等级.第二章 工作台结构及参数设计一、总体结构数控工作台采用由步进电机驱动的开环控制结构,其单向驱动系统结构简图如图所示:实际设计的工作台为X、Y双坐标联动工作台,工作台是由上拖板、中拖板、下拖板及导轨、滚珠丝杠等组成.其中下拖板与床身固联,它上面固定X向导轨,中拖板在下拖板的导轨上横向运动,其上固定Y向导轨,上拖板与工作台固联,在Y向导轨上移动.X、Y导轨方向互相垂直。.二、滚珠丝杠设计滚珠螺旋传动按滚动体循环方式分为外循环和内循环两类,其中应用较广的是插管式和螺旋槽式,它们各有特点,其轴向间隙的调整方法主要有垫片调隙式和螺纹调隙式,具体的实现方法可参考教材有关章节。滚珠丝杠传动副多为专业厂家生产,一般用户设计时只负责选用,在选用时主要验算其额定动载荷和临界转速,丝杠较长时还应进行压杆稳定性验算。1. 计算动载荷 (N)式中: 载荷系数 见表1硬度系数 见表2 轴向工作载荷 (N) L额定寿命 L=60nT/ n丝杠转速 (r/min)T使用寿命 (h) 见表3 表1 表2 载荷性质平稳或轻度冲击11.2轻度冲击1.21.5 较大冲击、振动1.52.5实际硬度HRC551.1501.56452 .4403.85表3类别普通机械普通机床数控、精密机械T(h)50001000010000150002. 计算临界转速 (r/min)式中 临界转速系数 见表4 长度系数 见表4 丝杠内径 (m)丝杠工作长度 (m) 表 4支承方式系数双推自由双推简支两端固定 1.883.934.73 20.67 3. 压杆稳定性计算 (N)式中 临界载荷E材料弹性模量 对于钢,E=2.06 丝杠危险截面惯性矩() 三、滚动导轨导轨是工作台系统的重要组成部分,由于滚动导轨具有定位精度高、低速无爬行、移动轻便等显著优点,故本工作台系统设计选用滚动导轨.滚动导轨应用最广的是滚珠导轨,按滚珠的循环方式分类,滚珠导轨又可分为滚珠不循环式和可循环式.在专业厂家生产的标准化滚动导轨中,都为滚动体可循环式,本次导轨设计的主要任务是根据负载情况选用标准化滚动导轨,在选用过程中,主要进行额定载荷验算.1. 计算行程长度寿命 TsTs=2Lsn60 /100 (km)式中 Ls工作单行程长度(m) n往复次数 (次/min) 工作时间寿命 (h) 2. 计算动载荷 =式中 F作用在滑座上的载荷 (N)滑座个数寿命系数 一般取K=50km温度系数 见表5接触系数 见表6硬度系数 见表7负载系数 见表8 表5 工作温度(0C)10011001500.91502000.72002500.6表6每根导轨上滑块数1120.8130.7240.66表7滚道表面硬度HRC605855535045Fh 10.980.90.710.540.38 表8工作条件fw无冲击、振动 V15m/min11.5较小冲击、振动V60m/min23.5第三章 步进电机的选择在选择步进电机时应主要考虑以下几个方面:a) 步距角是否适合系统脉冲当量的要求.b) 步进电机转矩是否满足要求.c) 步进电机起动频率及运行频率是否满足要求.一、步距角的确定 (度)式中 工作台脉冲当量 (mm/P)i传动系统传动比t滚珠丝杠导程 (mm)的确定应与i和t综合考虑,以满足工作台脉冲当量的要求.二、步进电机转矩校核1. 空载起动时电机轴总的负载转矩Tq Tq=Tj+Tu+To式中 1) Tj惯性转矩 Tj=J J电机轴总惯量(包括当量)起动时角加速度2)Tu工作台当量摩擦转矩 摩擦系数 传动链总效率 m工作台质量 3)To附加摩擦转矩 Fo预紧力 取为1/3轴向负载未预紧时丝杠效率,取0.92. 正常工作时电机轴总负载转矩Tg Tg=Tu+To+Tw式中 Tw负载转矩 Fw轴向负载最大值3. 电机最大静转矩Ts1) 按空载起动计算:Ts1=Tq/C其中常数C按下表选取2) 按正常工作计算:Ts2=Tg/0.30.5取 TsmaxTs1,Ts2电机相数3456运行拍数3648510612C0.50.8660.7070.7070.8090.9510.8660.866步进电机的最大静转矩应满足要求.三、频率校核 步进电机的起动频率和运行频率应根据实际情况,参考电机的矩频特性曲线进行选取.参考资料1.机电一体化设计基础 机械工业出版社 郑堤、唐可洪主编2.机床设计手册 机械工业出版社3.机械零件设计手册 机械工业出版社4.金属切削机床设计 机械工业出版社5.经济型数控机床系统设计 上海科学技术出版社6.机电一体化实用技术 上海科学技术文献出版社 设计说明书书写要求(一)正文:正文内容层次序号为:1、1.1、1.1.1。正文内容一般为:1、 选题背景:说明本课题应解决的主要问题及应达到的技术要求;简述本设计的指导思想。2、 方案论证:说明设计原理并进行方案选择,阐明为什么要选择这个设计方案以及所采用方案的特点。3、 过程(设计或实验)论述:对设计工作的详细表述。要求层次分明,表达确切。4、 结果分析:对研究过程中所获得的主要的数据、现象进行定性或定量分析,得出结论和推论。5、 结论和总结:对整个研究工作进行归纳和综合。(二)图纸要求:图面整洁,布局合理,线条粗细均匀,圆弧连接光滑,尺寸标注规范,文字注释必须使用工程字书写。提倡学生使用计算机绘图。(三)曲线图表要求:所有曲线、图表、线路图、流程图、程序框图、示意图等不准徒手画,必须按照国家规定标准和工程要求绘制(应尽可能采用计算机辅助绘图)。课程设计说明书(报告)要求文字通顺、语言流畅,无错别字,不得使用铅笔书写。按教务处印制的统一格式封皮装订。有条件的可用B5纸打印。课程设计说明书(报告)中图表、公式一律采用阿拉伯数字连续编号。图序及图名置与图的下方;表序及表名置与表的上方;说明书(报告)中的公式编号,用括号括起来写在右边行末,其间不加虚线。南昌航空大学科技学院学士学位论文计算机辅助设计与制造CAD/CAM是表示计算机辅助设计和计算机辅助制造的专业术语。它是一种使用计算机完成某些设计和生成功能的技术。在生产企业里,人们通常把设计和制造是为两项有着明显不同职能的分工,而这项技术正朝着设计与制造的更大程度一体化方向发展。最终,CAD/CAM将会为未来的计算机集成工厂提供技术基础。计算机辅助设计(CAD)可定义为运用计算机系统对设计的创意、修改、分析或优化予以辅助。这些由硬件和软件构成的计算机系统,用于完成用户公司要求的特定设计功能。CAD硬件通常包括:一台计算机,一个或多个图形显示终端,键盘和其他外围设备。CAD软件包括各种计算机制图程序,这些程序便于用户公司完成设计职能,如:零部件的应变分析,机构的动态响应,热传输计算和数控零件编程。由于用户的生产流程、制造工艺和销售市场方面的差异,应用程序的配置也将因用户而异。这些因素均导致对CAD系统要求的差异性。计算机辅助制造(CAM)可定义为通过直接或间接与厂家生产资源相适应的计算机界面,使用计算机系统来规划、管理和控制制造工厂的运行。正如定义所表示的那样,CAM应用程序可分为两大类:1. 计算机监控程序;2. 制造程序。二者之间的区别是理解计算机辅助制造的基础。计算机辅助制造的应用程序,除了为监控制造过程而直接使用计算机界面的应用程序之外,还包括在工厂生产运行过程中由计算机提供支持的间接应用程序。在这些应用程序中,计算机并不直接与制造过程相联接。相反,在脱机状态下,计算机可用来提供计划书、进度表、预报、指令和使厂家生产资源管理更加有效的信息资料。计算机和制造过程间的关系如下图所示。图中虚线用来说明交流和控制处于脱即状态下,需要人来完善界面。目前,CAM的应用需要由人来为计算机输入程序,解释计算机的输出,并采取所要求的措施。生产操作 计算机 处理数据 控制信号 CAM用于生产支持Notes:1. CAD(computer-aided design) 计算机辅助设计2. CAM(computer-aided manufacturing) 计算机辅助制造3. computer monitoring and control 计算机监控4. manufacturing support applications 生成支持应用软件5. peripheral equipment 外围设备(外设)6. computer graphics 电脑制图什么是CAD/CAM软件?许多刀具轨迹是简单的但太复杂和昂贵以致于人们很难制造,对于这种情况,我们需要在计算机的帮助下来作数控部分程序。CAD/CAM最基础的概念是,我们可以用计算机辅助设计系统在计算机上画出工件的几何形状。几何形状一旦完成,我们就可以用计算机辅助制造系统根据CAD的几何形状,生成数控机床的刀具轨迹。利用CAD绘制所有路径对数控加工的路径如下:第一步:利用CAD绘制几何图形已被定义这种工件包括型腔加工。对于这种型腔加工很可能将花几个小时去制造代码。然而,我们能够利用CAM程序去创造NC代码在每分钟内。第二步:接着,这个模型就被输入到CAM模块中。然后,我们就选择合适的几何形状并定义要生成的刀具轨迹类型,在这个例子中就是一个型腔。我们一定也能够让CAM系统如刀具的使用,材料的类型,进给量,切屑深度等信息。第三步:CAM模型证实保证刀具轨迹的正确性。如果发现了一些错误,最简单就是在某个位置上加以改正。第四步:CAD/CAM模块最终产生的是NC代码。通过模型的后处理则可以生成适用于特定CNC控制器的NC代码。我们取字体的首字母即CAPP,它代表了计算机辅助程序。CAPP是使用计算机辅助在数控刀具轨迹中的应用。然而,CAPP从来就没有真正获得广泛的流传和接受,而且至今我们很少听到这个项目。取而代之的是在更多的市场上使用CAD/CAM,使用计算机的思维来帮助生产NC程序。不幸的是,因为CAM是一个整体技术与制造技术和自动化技术有着关联的不仅是软件,而且使用CNC机器工具。描述CAD/CAM组成及功能CAD系统包括CAD设备及CAM设备每个都有许多功能元件。它们将在短时间内扫描这些元件目的是为了了解其工作的整个过程。1. CAD模型系统的CAD部分用于生成可作为CAD模型的几何形状。CAD模型是工件几何形状的电子描述,她在数学上是十分精确的。不论是独立的CAD系统还是作为CAD/CAM软件包的一部分的CAD系统,往往都可以在几个不同的层次上混合使用。两维线条图 几何图形被体现出两个方向,就象一张清单,Z轴深度将不得不与CAM相关。三维线框模型通过将代表边界的元素连接早一起,就可以在三维空间中表现几何形状。虽然线框图难以想象,但可以得到CAM所需的所有的Z向信息。三维表面模型 它与线框模型十分相似,所不同的是,在线框模型间覆盖了一层薄薄的外皮,从而使模型更形象。另外,模型型腔是空的,完成表面模型即可。三维实体模型这种当前高科技市场形式被使用必须通过所有的高端科技软件。几何形状被看作是一个实体特征其包括许多方面。实体模型可以被切开以展示内部特征,而不仅仅是拥有一层表皮。2. CAM模型根据CAD模型提供的几何形状,CAM模块用于创建加工工艺模型。例如,CAD模型可能包括一些特征,即凹槽型腔。我们可能应用其加工路线来加工几何图形,然后,所有的刀具路径将是自动的产生凹槽行程。同样,CAD模型也可包括几何图形应该产生钻的操作。我们能够选择简单的几何图形和按照CAM系统的说明在适当的位置上进行钻孔。CAM系统将生成描述加工操作的普通中间代码,这些代码以后可被用来生成G和M代码或会话式程序。在它们合适的环境下,有些系统产生中间代码。而其他使用较标准代码例如APT就是他们的中间文件。CAM模块也有多种类型和层次。首先,通常有些不同模型功能如铣、钻、以及装配,每一步工艺是唯一的,典型的模型有附加软件。每一个模型也可能使用不同的设备。例如,开始用简单的设备,到后来用复杂的、多方向的刀具轨迹路线,CAM模型中铣床加工通常加工的过程如下: 21/2-方向的机床 3个方向的机床 加工表面的机床 5个方向混合的机床每种体现出高精度的设备不可能在所有的坏镜下制造,一个工序很可能只要求三个方向的设备,而一个模型工序很可能需要全部的表面加工设备,而且可能需要五个方向的CAM软件包混合这样就有可能完成其加工表面。这种一流的软件安装很可能需要花费¥5000,但是许多复杂模型将花费¥15000甚至更多。因此,我们没有必要购买这种高水准的软件,因为我们不能完全发挥他们的潜能。3. 几何图形及刀具轨迹我们必须理解一个重要的概念,即CAD所绘制的几何形状并不一定与CNC机床加工出的几何形状完全一致。只要刀具轨迹是直线或圆弧,CNC机车就可以加工出非常精确的刀具轨迹。CAD系统也可能加工高精度几何图形如直线及圆弧,但是也可能加工许多不同层次的曲面,同样许多这种曲面被认为是非均匀有理B样条曲线。事实上,NURBS曲线可以描绘出从直线或圆弧到复杂的表面的任何几何形状。例如,就象几何图形为椭圆形,椭圆有一系列曲线,有着不同的环形弧,椭圆在CAD系统利用鼠标单击很容易产生。然而,一个标准的CNC加工刀具不能够直接使用产生一个椭圆它只能产生直线和圆弧。CAM系统将顺从于这种问题,通过估算用直线段代替曲线。CNC机床刀具通常只能识别圆弧或直线。因此,CAM系统必须估计直线段代替曲线之间的公差带。在这种情况下,就像椭圆刀具轨迹产生包含着用直线段代替曲线之间的公差带。CAM系统会在真正的曲线两侧各生成一个几何边界,从而形成一个公差带。它将生成一道刀具轨迹线包含着少量的公差带,结果这刀具轨迹将在数学理论上不正确CAM系统只能估算表面,使用它最基本的方法是为了估算刀具轨迹包括两维曲线及三维表面曲线。有些CAM系统也有可能直接绘制直线段为圆弧曲线。这可能在程序中产生许多模块导致表面的光滑。这种出现能够控制公差带的大小,其目的是使的刀具轨迹更加精确,这是有必要的。较小的公差带可以生成细致的刀具轨迹以及大量的直线段,而较大的公差带将会产生较少的直线段,刀具轨迹也比较粗糙。每一个直线段将要求在NC程序有模块代码。因此,当使用这种技术时,NC程序能够扩大范围。在加工表面时我们一定要细心,依靠计算机生成正确的刀具很容易,但在用球状端铣刀进行曲面的精加工是须进一步估价。如果我们没能注意到这种技术的局限性,那么精加工后工件的精度就会大打折扣。4. 刀具库和材料库为了创建机械加工工艺,CAM系统需要了解切割刀具的利用以及机械材料。CAM注意的是通过提供可定制的刀具型号及类型。材料库包括的信息是最优化的切削速度以及进给量。CAM使用这种信息聚在一起创建正确的刀具轨迹以及机床参数。这类刀具和材料库的格式经常是独有的,这一点带来了一些兼容问题。专用的工具库及材料库不容易修改或不容易使用其他的系统。进步的CAM开发者趋向于将刀具和材料库生成数据库文件,这样就可以为其他的应用者进行修改和定制提供方便。5. 检验及后置处理CAM系统通常提供检验刀具轨迹是否正确性的功能。这可以通过加工操作的刀具中心线的简单绘制或通过复杂的实体模型来实现。实体验证通常是CAD/CAM软件公司已经获得许可的第三方软件。然而,它可能是作为一个独立的软件包。后置处理器是一个软件程序,他将通过的中间代码格式化为使用于每个特定机床控制器的NC代码。后置处理器通常可以通过模板和变量被定制为需要的样式。6. 便捷性电子数据的便捷性是CAD/CAM系统唯一致命的弱点,这个问题任就是一件十分耗时的事情。CAD文件创建了许多格式以及它们之间有许多步同的组成。利用CAD系统创建一个复杂的模型是比较昂贵的。因此,我们希望使模型的便捷性最大化,而使在不同系统中重新生成几何模型的需求最小化。CAM模型与手提式的CAD模型不同,我们通常不能够发展一个CAM模型以及把它转换成其他格式。唯一被广泛接受的CAM模型交换版本就是自动编程工具(APT)。自动编程工具是一种利用描述机床操作的程序语言工具,自动编程工具是一种标准的、有着好的文件能够通过三个方向软件的发展的促进。许多CAD/CAM系统可以按照这种标准输出文件,而(由此生成的)CAM文件以后也可以被后置处理程序和校验软件使用。有时会有这样的情况,即特定的CAD/CAM系统生成的特有的中间文件不经任何额外的后置处理就可以直接输入到机床之中。这是理想的解决方案,然而目前尚无任何标准管理这种交换。CAD/CAM模型交换的另一种方法是利用逆向后置处理器。逆向后置处理器可以从数控G&M代码程序生成CAD/CAM模型。这种程序确实有些作用,但是,程序员必须花相当多的时间去搞清楚模型的设计意图,而且还要将刀具路径从几何形状中分离出来。总体来说,后置处理器的应用具有一定的局限性。软件的组成及发展趋势在整个工业上,许多软件包利用CAD或CAD/CAM。纯CAD系统被应用于所有的设计领域,实际上今天所有的产品都是用CAD软件设计出来的用纸笔绘的日子已经一去不复返了。另一方面,CAD/CAM软件包有着更多专利。CAD/CAM虽然小,但地位十分重要,它的应用通常限制在加工和装配业,其数量要比CAD小得多。CAD/CAM系统包括CAD软件设计以及CAM软件去创建刀具轨迹和NC代码。然而,普通的CAD模型相比于纯CAD软件比较弱及不精炼。这种不匹配造成了CAD设计者与CAD/CAM程序员之间一直以来的争论,其主题是如何使CAD/CAM能够融合。如果先在业界一流的CAD系统上生成所有几何形状,然后再图形输入到某个CAD/CAM系统中,就会产生很大的争论。工程师创建CAD模型逐步形成一种模式,商业就会更加充裕。几何形状能够输入到CAD/CAM软件包中产生处理模型。因此,工业引导CAD软件包走向不正式的标准。标准的接受度越高,拥有该软件的公司的投资回报率就会越高。反对意见来自于小的组织,他们没有必要或者没有资源同时拥有昂贵的符合工业标准的CAD软件包以及CAD/CAM软件包。他们往往需要根据纸上工程图重画几何图形,或者用并不完善的翻译设备输入模型。任何起源模型将结束走向于更高的正式的CAD/CAM文件。这类模型很可能在将来又被翻译成更为标准的版本。不论选择什么样的方法,各种组织和个人往往都会竭尽保护某种技术。如果他们检查发现有巨大的效果,花时间去学习它以及吸收科学知识。然而,他将转变成一种新的技术是很困难的事,即使它们体现出具有无法抵抗的证据来证实更好的方法。这是一次十分痛苦的转变,当然如果我们能够看见我们的将来,这是不可能发生的事情。但是事实上,我们不可能总是预测支配的科学技术将在几年内走下坡路。结果形成了技术壕沟,要从脚下消除这种壕沟将会十分困难和昂贵。大约只能保证,我们能够发现去选择技术出现最标准,即使不完美也要留住它.然而,如果发现走下坡路,我们将也更加适应这位置。Modern design and manufacturing CAD/CAMCAD/CAM is a term which means computer-aided design and computer-aided manufacturing. It is the technology concerned with the use of digital computers to perform certain functions in design and production. This technology is moving in the direction of greater integration(一体化)of design and manufacturing, two activities which have traditionally been treated as distinct(清楚的)and separate functions in a production firm. Ultimately, CAD/CAM will provide the technology base for the computer-integrated factory of the future.Computer-aided design (CAD) can be defined as the use of computer systems to assist in the creation, modification, analysis, or optimization(最优化)of a design. The computer systems consist of the hardware and software to perform the specialized design functions required by the particular user firm. The CAD hardware typically includes the computer, one or more graphics display terminals, keyboards, and other peripheral equipment. The CAD software consists of the computer programs to implement(实现,执行)computer graphics to facilitate the engineering functions of the user company. Examples of these application programs include stress-strain(压力-应变)analysis of components(部件), dynamic(动态的)response of mechanisms, heat-transfer calculations, and numerical control part programming. The collection of application programs will vary from one user firm to the next because their product lines, manufacturing processes, and customer markets are different these factors give rise to differences in CAD system requirements.Computer-aided manufacturing (CAM) can be defined as the use of computer systems to plan, manage, and control the operations of a manufacturing plant through either direct or indirect computer interface with the plants production resources. As indicated by the definition, the applications of computer-aided manufacturing fall into two broad categories: 1.computer monitoring and control. 2.manufacturing support applications.The distinction between the two categories is fundamental to an understanding of computer-aided manufacturing.In addition to the applications involving a direct computer-process interface(界面,接口)for the purpose of process monitoring and control, compute-aided manufacturing also includes indirect applications in which the computer serves a support role in the manufacturing operations of the plant. In these applications, the computer is not linked directly to the manufacturing process. Instead, the computer is used “off-line”(脱机)to provide plans, schedules, forecasts, instructions, and information by which the firms production resources can be managed more effectively. The form of the relationship between the computer and the process is represented symbolically in the figure given below. Dashed lines(虚线)are used to indicate that the communication and control link is an off-line connection, with human beings often required to consummate(使圆满)the interface. However, human beings are presently required in the application either to provide input to the computer programs or to interpret the computer output and implement the required action.Manufacturing operations computer Process data Control signals CAM for manufacturing supportWhat is CAD/CAM software? Many toolpaths are simply too difficult and expensive to program manually. For these situations, we need the help of a computer to write an NC part program.The fundamental concept of CAD/CAM is that we can use a Computer-Aided Drafting (CAD) system to draw the geometry of a workpiece on a computer. Once the geometry is completed, then we can use a computer-Aided Manufacturing (CAM) system to generate an NC toolpath based on the CAD geometry. The progression(行进,级数 )from a CAD drawing all the way to the working NC code is illustrated as follows:Step 1: The geometry is defined in a CAD drawing. This workpiece contains a pocket to be machined. It might take several hours to manually write the code for this pocket(凹槽,型腔). However, we can use a CAM program to create the NC code in a matter of minutes. Step 2: The model is next imported into the CAM module. We can then select the proper geometry and define the style of toolpath to create, which in this case is a pocket. We must also tell the CAM system which tools to use, the type of material, feed, and depth of cut information.Step 3: The CAM model is then verified to ensure that the toolpaths are correct. If any mistakes are found, it is simple to make changes at this point. Step 4: The final product of CAD/CAM process is the NC code. The NC code is produced by post-processing(后处理)the model, the code is customized(定制,用户化)to accommodate the particular variety of CNC control. Another acronym that we may run into is CAPP, which stands for Computer-Aided Part Programming. CAPP is the process of using computers to aid in the programming of NC toolpaths. However, the acronym CAPP never really gained widespread acceptance, and today we seldom hear this term. Instead, the more marketable CAD/CAM is used to express the idea of using computers to help generate NC part programs. This is unfortunate because CAM is an entire group of technologies related to manufacturing design and automation-not just the software that is used to program CNC machine tools.Description of CAD/CAM Components and FunctionsCAD/CAM systems contain both CAD and CAM capabilities each of which has a number of functional elements. It will help to take a short look at some of these elements in order to understand the entire process.1. CAD ModuleThe CAD portion of the system is used to create the geometry as a CAD model. The CAD model is an electronic description of the workpiece geometry that is mathematically precise. The CAD system, whether stand alone or as part of a CAD/CAM package, tends to be available in several different levels of sophistication. (强词夺理,混合)2-D line drawings 两维线条图Geometry is represented in two axes, much like drawing on a sheet of paper. Z-level depths will have to be added on the CAM end.3-D wireframe models 三维线框模型Geometry is represented in three-dimensional space by connecting elements that represent edges and boundaries. Wiregrames can be difficult to visualize(想象,形象化,显现), but all Z axis information is available for the CAM operations. 3-D surface models 三维表面模型These are similar to wireframes except that a thin skin has been stretched over the wireframe model to aid in visualization. Inside, the model is empty. Complex contoured Surfaces are possible with surface models.3-D solid modeling 三维实体模型This is the current state of the market technology that is used by all high-end software. The geometry is represented as a solid feature that contains mass. Solid models can be sliced(切片,部分 ,片段)open to reveal internal features and not just a thin skin. 2. CAM ModuleThe CAM module is used to create the machining process model based upon the geometry supplied in the CAD model. For example, the CAD model may contain a feature that we recognize as a pocket .We could apply a pocketing routine to the geometry, and then all of the toolpaths would be automatically created to produce the pocket. Likewise, the CAD model(模子,铸型)may contain geometry that should be produced with drilling operations. We can simply select the geometry and instruct the CAM system to drill holes at the selected locations.The CAM system will generate a generic(一般的,普通的 )intermediate(中间的,媒介)code that describes the machining operations, which can later be used to produce G & M code or conversational programs. Some systems create intermediate code in their own proprietary(所有的,私人拥有的 ) language, which others use open standards such as APT for their intermediate files.The CAM modules also come in several classes and levels of sophistication. First, there is usually a different module available for milling, turning, wire EDM, and fabrication(装配). Each of the processes is unique enough that the modules are typically sold as add-ins(附加软件). Each module may also be available with different levels of capability. For example, CAM modules for milling are often broken into stages as follows, starting with very simple capabilities and ending with complex, multi-axis toolpaths : 21/2-axis machining Three-axis machining with fourth-axis positioning Surface machining Simultaneous five-axis machiningEach of these represents a higher level of capability that may not be needed in all manufacturing environments. A job shop might only require 3-axis capability. An aerospace contractor might need a sophisticated 5-axis CAM package that is capable of complex machining. This class of software might start at $5,000 per installation, but the most sophisticated modules can cost $15,000 or more. Therefore, there is no need to buy software at such a high level that we will not be able to use it to its full potential.3.Geometry vs. toolpathOne important concept we must understand is that the geometry represented by the CAD drawing may not be exactly the same geometry that is produced on the CNC machine tool. CNC machine tools are equipped to produce very accurate toolpaths as long as the toolpaths are either straight lines or circular arcs. CAD systems are also capable of producing highly accurate geometry of straight line and circular arcs, but they can also produce a number of other classes of curves. Most often these curves are represented as Non-Uniform(不均匀的,不一致的)Rational Bezier Splines (NURBS) (非均匀有理B样条). NURBS curves can represent virtually any geometry, ranging from a straight line or circular arc to complex surfaces. Take, for example, the geometric entity that we call an ellipse(椭圆形). An ellipse is a class of curve that is mathematically different from a circular arc. An ellipse is easily produced on a CAD system with the click of the mouse. However, a standard CNC machine tool cannot be use to directly problem an ellipse it can only create lines and circular arcs. The CAM system will reconcile(使和解,使顺从)this problem by estimating the curve with line segments.CNC machine tools usually only understand circular arcs or straight lines. Therefore, the CAM system must estimate curved surfaces with line segments. The curve in this illustration is that of an ellipse, and the toolpath generated consists of tangent line segments that are contained within a tolerance zone.The CAM system will generate a bounding geometry on either side of the true curve to form a tolerance zone. It will then produce a toolpath from the line segment that stays contained within the tolerance zone. The resulting toolpath will not be mathematically correct the CAM system will only be able to estimate the surface. This basic method is used to produce estimated toolpaths for both 2-D curves and 3-D surface curves.Some CAM programs also have the ability to convert the line segments into arc segments. This can reduce the number of blocks in the program and lead to smoother surfaces.The programmer can control the size of the tolerance zone to create a toolpath that is as accurate as is needed. Smaller tolerance zones will produce finer toolpaths and more numerous line segments, while larger tolerance zones will produce fewer line segments and coarser(粗糙的) toolpaths. Each line segment will require a block of code in the NC program, so the NC part program can grow very large when using this technique.We must use caution when machining surfaces. It is easy to rely on the computer to generate the correct tooolpath, but finished surfaces are further estimated during machining with ball end mills. If we do not pay attention to the limitations of these techniques, then the accuracy of the finished workpiece may be compromised(妥协,折衷).4.Tool and material librariesTo create the machining operations, the CAM system will need to know which cutting tools are available and what material we are machining. CAM systems take care of this by providing customizable (可定制的 )libraries of cutting tools and materials. Tool libraries contain information about the shape and style of the tool. Material libraries contain information that is used to optimize(使最优化)the cutting speeds and feeds. The CAM system uses this information together to create the correct toolpaths and machining parameters.(参数)The format of these tool and material libraries is often proprietary(专利的,独占的,私有的)and can present some portability issues. Proprietary(轻便,移动)tool and material files cannot be easily modified or used on another system. More progressive ( 改革论者,进步论者,前进的)CAM developers tend to produce their tool and material libraries as database files that can be easily modified and customized for other applications. 5.Verification and post-processorCAM systems usually provide the ability to verify that the proposed toolpaths are correct. This can be via a simple backplot(背景绘制) of the tool centerline or via a sophisticated solid model of the machining operations. The solids verifications(确认,查证)is often a third-party software that the CAD/CAM software company has licensed.(得到许可的 ) However, it may be available as a standalone package.The post-processor is a software program that takes a generic intermediate code and formats the NC code for each particular machine tool control. The post-processor(后置处理器) can often be customized through templates(模板)and variables to provide the required customization. (用户化,专用化,定制)6.Portability 轻便,可带的Portability of electronic data is the Achilles heel(唯一致命的弱点)of CAD/CAM systems and continues to be a time-consuming concern. CAD files are created in a number of formats and have to be shared between many organizations. It is very expensive to create a complex model on a CAD system; therefore, we want to maximize the portability of our models and minimize the need for recreating the geometry on another system. DXF, DWG, IGES, SAT, STL and parasolids are a few of the common formats for CAD data exchange.CAM process models are not nearly as portable as CAD models. We cannot usually take a CAM model developed in one system and transfer it to another platform. The only widely accepted standard for CAM model interchange is a version of Automatically Programmed Tool (APT). APT is a programming language used to describe mac
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。