高中数学 第三章 圆锥曲线性质的探讨 一类圆锥曲线相交弦问题的统一研究素材 新人教A版选修4-1(通用)_第1页
高中数学 第三章 圆锥曲线性质的探讨 一类圆锥曲线相交弦问题的统一研究素材 新人教A版选修4-1(通用)_第2页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一类圆锥曲线相交弦问题的统一研究定理:过圆锥曲线的焦点F的直线与圆锥曲线相交于A、B两点,交平行于准线的直线于点M.若,则有为定值.当直线为圆锥曲线的准线;过顶点的切线;过有心圆锥曲线的中心时,都可以作为定理的推论.这样做是一举多得,这是统一研究的一种形式.这个定理的证明有两种方法,一种是分为椭圆、双曲线、抛物线三种情况证明,另一种是建立圆锥曲线的统一方程,一起证明.我们采用后一种方法,统一证明,使过程缩短,这是统一研究的重要方法.我们拟使用的是人教版解析几何课本中,由极坐标的圆锥曲线统一方程转化为直角坐标系的方程(如图1):在方程(1)中,表示焦点F到准线的距离,表示离心率.当时, 表示椭圆;当时, 表示双曲线(两支);当时, 表示抛物线.这是焦点重合的圆锥曲线的统一方程.在此情况下,准线的方程为;在方程(1)中,令得当时,方程(1)表示有心圆锥曲线.设方程(2)的两根为,由韦达定理得: .即有心圆锥曲线的中心为;解得方程(2)的两根为.显然图1中顶点E的坐标为.当时,点E的坐标为.可以统一记为E.下面我们在圆锥曲线统一方程(1)的情况下,证明定理.如图2,设直线的方程为.点A、B、M的坐标分别为.由得.由得;由得.把方程(3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论