




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、28.1锐角三角函数(2),余弦 正切,复习与探究:,1.锐角正弦的定义,在 中,,A的正弦:,2、当锐角A确定时,A的对边与斜边的比就随之确定。此时,其他边之间的比是否也随之确定?为什么?,新知探索:,1、你能将“其他边之比”用比例的式子表示出来吗?这样的比有多少?,2、当锐角A确定时,A的邻边与斜边的比, A的对边与邻边的比也随之确定吗?为什么?交流并说出理由。,方法一:从特殊到一般,仿照正弦的研究过程;,方法二:根据相似三角形的性质来说明。,如图,在RtABC中,C90,,我们把锐角A的邻边与斜边的比叫做A的 余弦(cosine),记作cosA, 即,我们把锐角A的对边与邻边的比叫做A的
2、 正切(tangent),记作tanA, 即,rldmm8989889,注意,cosA,tanA是一个完整的符号,它表示A的余弦、正切,记号里习惯省去角的符号“”; cosA,tanA没有单位,它表示一个比值,即直角三角形中A的邻边与斜边的比、对边与邻边的比; cosA不表示“cos”乘以“A”, tanA不表示“tan”乘以“A”,rldmm8989889,锐角A的正弦、余弦、正切都叫做A的锐角三角函数.,rldmm8989889,例1 如图,在RtABC中,C90,BC=6, ,求cosA和tanB的值,rldmm8989889,例2 如图,在RtABC中,C90,BC=2,AB=3,求A,B的正弦、余弦、正切值,延伸:由上面的计算,你能猜想A,B的正弦、余弦值有什么规律吗?,结论:一个锐角的正弦等于它余角的余弦,或一个锐角的余弦等于它余角的正弦。,rldmm8989889,练习,课本P78 练习1,2,3. 补充练习 1、在等腰ABC中,AB=AC=5,BC=6,求sinB,cosB,tanB.,D,rldmm8989889,补充练习,2、如图所示,在ABC中,ACB90,AC=12,AB=13,BCM=BAC,求sinB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业培训视频课件下载
- Photoshop平面设计基础 课件 任务2.4 制作风景图片
- 办理出国考察代办手续服务合同
- 药用辅料运输方案
- 城堡修缮方案
- 财务尽职调查与风险评估综合服务协议
- 东南亚家居品牌国内加盟授权协议
- 娱乐场所安保人员招聘合同样本
- 市政规划应急方案
- 党课知识教学课件
- 【正版授权】 ISO 13408-7:2012 EN Aseptic processing of health care products - Part 7: Alternative processes for medical devices and combination products
- 山东省淄博市2024年高一下学期期末考试英语试题含解析
- GB/T 8492-2024一般用途耐热钢及合金铸件
- 10kv线路带电跨越综合项目施工专项方案
- 材料、构配件进场检验记录表C4-44
- 有线广播电视机务员职业技能试题及答案
- 管沟开挖回填专项施工方案
- 产业园概念规划设计任务书
- 新HSK一至六级词汇表
- 项目招商引资的供应商风险评估
- 2024年能源法律培训资料
评论
0/150
提交评论