高考资源网 - 顺昌县第一中学网络应用平台_第1页
高考资源网 - 顺昌县第一中学网络应用平台_第2页
高考资源网 - 顺昌县第一中学网络应用平台_第3页
高考资源网 - 顺昌县第一中学网络应用平台_第4页
高考资源网 - 顺昌县第一中学网络应用平台_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高二下学期数学(文科)教案高中数学总复习 (一)集合 教学目的:知识目标:(1)使学生初步理解集合的概念,知道常用数集的概念及其记法 (2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义能力目标:(1)重视基础知识的教学、基本技能的训练和能力的培养; (2)启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题; (3)通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力; 德育目标:激发学生学习数学的兴趣和积极性,陶冶学生的情操,实事求是的科学学习态 度和勇于创新的精神。教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用

2、表示方法列举法与描述法,正确表示一些简单的集合教 具:多媒体、实物投影仪教学过程 (一)集合的有关概念1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合。(2)元素:集合中每个对象叫做这个集合的元素。 2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合。记作N(2)正整数集:非负整数集内排除0的集。记作N*或N+(3)整数集:全体整数的集合。记作Z(4)有理数集:全体有理数的集合。记作Q(5)实数集:全体实数的集合。记作R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。 (2)非负整数集内排除0的集。记作N*或N+ 。Q、Z、R等其它数集内排除0

3、的集,也是这样表示,例如,整数集内排除0的集,表示成Z*3、元素对于集合的隶属关系(1)属于:如果a是集合A的元素,就说a属于A,记作aA(2)不属于:如果a不是集合A的元素,就说a不属于A,记作4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。(2)互异性:集合中的元素没有重复。(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)注:1、集合通常用大写的拉丁字母表示,如A、B、C、P、Q元素通常用小写的拉丁字母表示,如a、b、c、p、q2、“”的开口方向,不能把aA颠倒过来写。练习题1、教材P5练习2、下列各组对象能确定一个

4、集合吗?(1)所有很大的实数。 (不确定)(2)好心的人。 (不确定)(3)1,2,2,3,4,5(有重复)阅读教材第二部分,问题如下:1集合的表示方法有几种?分别是如何定义的?2有限集、无限集、空集的概念是什么?试各举一例。(二)集合的表示方法1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法。例如,由方程的所有解组成的集合,可以表示为-1,1注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:51,52,53,100所有正奇数组成的集合:1,3,5,7,(2)a与a不同:a表示一个元素,a表示一个集合,该集合只有一个元素。描述法:用确定的条件表示某些对象是否

5、属于这个集合,并把这个条件写在大括号内表示集合的方法。格式:xA| P(x) 含义:在集合A中满足条件P(x)的x的集合。例如,不等式的解集可以表示为:或 所有直角三角形的集合可以表示为:注:(1)在不致混淆的情况下,可以省去竖线及左边部分。 如:直角三角形;大于104的实数 (2)错误表示法:实数集;全体实数3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法。注:何时用列举法?何时用描述法?(1) 有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法。如:集合(2) 有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法。如:集合;集合1000以

6、内的质数注:集合与集合是同一个集合吗?答:不是。集合是点集,集合= 是数集。(三) 有限集与无限集1、 有限集:含有有限个元素的集合。2、 无限集:含有无限个元素的集合。3、 空集:不含任何元素的集合。记作,如:练习题:1、P6练习 2、用描述法表示下列集合1,4,7,10,13 -2,-4,-6,-8,-10 3、用列举法表示下列集合 xN|x是15的约数 1,3,5,15(x,y)|x1,2,y1,2 (1,1),(1,2),(2,1)(2,2)注:防止把(1,2)写成1,2或x=1,y=2 -1,1 (0,8)(2,5),(4,2) (1,1),(1,2),(1,4)(2,1),(2,2

7、),(2,4),(4,1),(4,2),(4,4) 三、小 结I. 基础知识要点 1. 集合中元素具有确定性、无序性、互异性.2. 集合的性质:任何一个集合是它本身的子集,记为;空集是任何集合的子集,记为;空集是任何非空集合的真子集;如果,同时,那么A = B.如果.注:Z= 整数() Z =全体整数 ()已知集合S 中A的补集是一个有限集,则集合A也是有限集.()(例:S=N; A=,则CsA= 0) 空集的补集是全集. 若集合A=集合B,则CBA = , CAB = CS(CAB)= D ( 注 :CAB = ).3. (x,y)|xy =0,xR,yR坐标轴上的点集.(x,y)|xy0,

8、xR,yR二、四象限的点集. (x,y)|xy0,xR,yR 一、三象限的点集.注:对方程组解的集合应是点集.例: 解的集合(2,1).点集与数集的交集是. (例:A =(x,y)| y =x+1 B=y|y =x2+1 则AB =)4. n个元素的子集有2n个. n个元素的真子集有2n 1个. n个元素的非空真子集有2n2个.5. 一个命题的否命题为真,它的逆命题一定为真. 否命题逆命题.一个命题为真,则它的逆否命题一定为真. 原命题逆否命题.例:若应是真命题.解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真. .解:逆否:x + y =3x = 1或y = 2.,

9、故是的既不是充分,又不是必要条件.小范围推出大范围;大范围推不出小范围.例:若. 本节课学习了以下内容:1集合的有关概念(集合、元素、属于、不属于、有限集、无限集、空集)2集合的表示方法(列举法、描述法、文氏图共3种)3常用数集的定义及记法四、课后作业:优化设计1.1节五、板书设计:课题一、知识点(一)(二)例题:12 六、教学反思: 本节课在教学时主要教会学生学习集合的表示方法,在认识集合时,应从两方面入手:(1)元素是什么?(2)确定集合的表示方法是什么?表示集合时,与采用字母名称无关。从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表

10、示方法,包括列举法、描述法。 高中数学总复习(二) 函数教学目标:1.了解映射的概念,理解函数的概念。2.了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法。3.了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数。教学重点:1.理解分数指数幂的概念,掌握有理指数幂的运算性质.掌握指数函数的概念、图像和性质。2.理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质。3.能够运用函数的性质,特别是指数函数和对数函数的性质解决某些简单的实际问题。教学难点:1. 直接通过具体函数考查某些性质2. 以导数为工具围绕函数、不等式、方程综合考查3.

11、函数与解析几何、数列等内容结合在一起,以曲线方程的变换、参数范围的探求及最值问题等综合性强的新颖试题。教学过程:(一)考题回放1设(C )A.0 B.1 C.2 D.32.函数y=f(x)的图象与y=2的图象关于y轴对称,若y=f-1(x)是y=f(x)的反函数,则y=f-1(x2-2x)的单调增区间是( D )A.1,+ B.(2,+) C.(-,1 ) D.(-,0)3.在下列四个函数中,满足性质:“对于区间(1,2)上的任意x1,x2(x1x2), |f(x1)-f(x2)|1时, 则h(x)4,其中等号当x=2时成立若x0,a1)在区间-1,1上的最大值为14,求a的值。解:令u=ax

12、,y=(u+1)2-2.因为-1x1当a1时当0a0x1,x2是方程x2ax2=0的两非零实根, x1+x2=a, 从而|x1x2|=.x1x2=2,1a1,|x1-x2|=3.要使不等式m2+tm+1|x1x2|对任意aA及t1,1恒成立,当且仅当m2+tm+13对任意t1,1恒成立,即m2+tm20对任意t1,1恒成立. 设g(t)=m2+tm2=mt+(m22),方法一: g(1)=m2m20, g(1)=m2+m20,m2或m2.所以,存在实数m,使不等式m2+tm+1|x1x2|对任意aA及t1,1恒成立,其取值范围是m|m2,或m2.方法二:当m=0时,显然不成立;当m0时, m0, m0,0)的单调区间的确定的基本思想是把(x)看作一个整体,再利用正弦函数的单调区间解出x即为所求若0.设x1,x2为方程*的两根,则x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论