版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1、负极径的定义,说明:一般情况下,极径都是正值;在某些必要情况下,极径也可以取负值。(?),对于点M(,)负极径时的规定:,1作射线OP,使XOP= ,2在OP的反向延长 线上取一点M,使OM= ,2、负极径的实例,在极坐标系中画出点 M(3,/4)的位置,1作射线OP,使XOP= /4,2在OP的反向延长线上取一点M,使OM= 3,负极径小结:极径变为负,极角增加 。,答:(6, +),或(6, +),特别强调:一般情况下(若不作特别说明时),认为 0 。因为负极径只在极少数情况用。,1.3.2直线的极坐标方程,新课引入:,思考:在平面直角坐标系中,1、过点(3,0)且与x轴垂直的直线方程
2、为 ;过点(3,3)且与x轴垂直的直线方程为,x=3,x=3,2、过点(a,b)且垂直于x轴的直线方程为_,x=a,特点:所有点的横坐标都是一样,纵坐标可以取任意值。,答:与直角坐标系里的情况一样,求曲线的极坐标方程就是找出曲线上动点的坐标与之间的关系,然后列出方程(,)=0 ,再化简并讨论。,怎样求曲线的极坐标方程?,例题1:求过极点,倾角为 的射线的极坐标方程。,分析:,如图,所求的射线上任一点的极角都是 ,,其极径可以取任意的非负数。故所求,直线的极坐标方程为,新课讲授,1、求过极点,倾角为 的射线的极坐标方程。,易得,思考:,2、求过极点,倾角为 的直线的极坐标方程。,和前面的直角坐标
3、系里直线方程的表示形式比较起来,极坐标系里的直线表示起来很不方便,要用两条射线组合而成。原因在哪?,为了弥补这个不足,可以考虑允许极径可以取全体实数。则上面的直线的极坐标方程可以表示为,或,例题2、求过点A(a,0)(a0),且垂直于极轴的直线L的极坐标方程。,解:如图,设点,为直线L上除点A外的任意一点,连接OM,在 中有,即,可以验证,点A的坐标也满足上式。,求直线的极坐标方程步骤,1、根据题意画出草图;,2、设点 是直线上任意一点;,3、连接MO;,4、根据几何条件建立关于 的方 程,并化简;,5、检验并确认所得的方程即为所求。,练习:设点P的极坐标为A ,直线 过点P且与极轴所成的角为 ,求直线 的极坐标方程。,解:如图,设点,为直线 上异于的点,连接OM,,在 中有,即,显然A点也满足上方程。,例题3设点P的极坐标为 ,直线 过点P且与极轴所成的角为 ,求直线 的极坐标方程。,则 由点P的极坐标知,由正弦定理得,显然点P的坐标也是它的解。,小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年直播带货供应链跨境物流发展报告
- 2025年电子商务快递配送协议
- 初中化学气体制备装置微型化设计中的学生实验兴趣培养课题报告教学研究课题报告
- 2026年玉林市荣军优抚医院人才招聘50人备考题库及答案详解参考
- 2025年秋学期八年级上册音乐(人音版·北京)期末测试卷(三套含答案)
- 2026年广西自然资源职业技术学院单招职业技能笔试备考题库及答案解析
- 2026年普陀区教育系统公开招聘391名教师备考题库参考答案详解
- 2026年南丹县消防救援大队招聘备考题库及答案详解(考点梳理)
- 2025年普宁市潮剧团公开招聘工作人员备考题库及完整答案详解1套
- 延安大学2026年人事代理人员招聘备考题库附答案详解
- 2025年中国工艺白茶市场调查研究报告
- 污水站卫生管理制度
- T/CCOA 33-2020平房仓气密改造操作规范
- 自行车购车协议合同
- 2025至2030中国聚四氟乙烯(PTFE)行业经营状况及投融资动态研究报告
- 教育、科技、人才一体化发展
- 农村经济统计培训
- 滴滴出行网约车加盟合作协议
- 广东工业大学《嵌入式系统软件设计A》2023-2024学年第二学期期末试卷
- 背光模组工艺流程
- 贵州省铜仁市2024-2025学年高二上学期期末检测物理试题(含答案)
评论
0/150
提交评论