




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、3.3 二元一次不等式(组)与简单的线性规划问题 3.3.1 二元一次不等式(组)与平面区域 第1课时 二元一次不等式表示的平面区域,一家银行的信贷部计划年初投入25 000 000元用于企业和个人贷款,希望这笔资金至少可带来30 000元的收益,其中企业贷款获益12,个人贷款获益10.,上述问题应该用什么不等式模型来刻画呢?,1.了解二元一次不等式的实际背景. 2.了解二元一次不等式的几何意义. 3.能正确地使用平面区域表示二元一次不等式.(难点),设用于企业贷款的资金为x元,用于个人贷款的资金为y元.由资金总数为25 000 000元,得到,1.二元一次不等式: 含有两个未知数,并且未知数
2、的次数是1的不等式.,探究点1 二元一次不等式的有关概念,由于预计企业贷款创收12,个人贷款创收10,共创收30 000元以上,所以,即,最后考虑到用于企业贷款和个人贷款的资金数额都不能是负值,所以,2.二元一次不等式的解集:,满足二元一次不等式的x和y的取值构成有序数对(x,y),所有这样的有序数对(x,y)构成的集合称为二元一次不等式的解集.,有序数对可以看成直角坐标平面内点的坐标.于是,二元一次不等式的解集就可以看成直角坐标系内的点构成的集合.,例如二元一次不等式xy6的解集为: 提示:(x,y)|xy6.,以二元一次不等式 的解为坐标的点的集合 表示什么平面图形?,探究点2 二元一次不
3、等式与平面区域,在直线 上的点; 在直线 左上方 的区域内的点; 在直线 右下方 的区域内的点.,平面内的点被直线,分成三类:,提示:,横坐标,点 的纵坐标,点 的纵坐标,-3,-2,-1,0,1,2,3,-9,-8,-7,-6,-5,-4,-3,-9,-8,-7,-6,-5,-4,-3,当点A与点P有相同的横坐标时,它们的纵坐标有什么关系?据此说说直线l左上方点的坐标与不等式x-y6有什么关系?直线l右下方点的坐标呢?,我们发现,在平面直角坐标系中,以二元一次不等式 xy6的解为坐标的点都在直线xy6的左上方;反之,直线xy6左上方点的坐标都满足不等式xy6.直线xy6右下方点的坐标满足不等
4、式xy6.,提示:点A的纵坐标大于点P的纵坐标.,因此,在平面直角坐标系中,不等式x-y6表示直线x-y6左上方的平面区域.,x,O,y,x,O,y,不等式x-y6表示直线x-y6右下方的平面区域.,直线x-y6叫做这两个区域的边界. 这里,把直线x-y6画成虚线,以表示区域不包括边界.,【提升总结】,(3)区域确定:,不等式x2y+60表示的区域在直线x2y+6=0的 ( ),A.右上方 B.右下方 C.左上方 D.左下方,B,【即时练习】,例 画出不等式 表示的平面区域.,解:先作出边界 因为这条直线上的点都 不满足 所以 画成虚线.,不等式 表示的区域如图所示.,表示的平面区域内,,取原
5、点(0,0),因为 所以原点(0,0)在,注意虚实线,画出不等式4x3y12表示的平面区域.,【解析】,【变式练习】,1不等式2xy50表示的平面区域在 直线2xy50的() A右上方B右下方 C左上方 D左下方,A,【解析】先作出边界2xy50,因为这条直线上的点都不满足2xy50,所以画成虚线取原点(0,0),代入2xy5.因为200550,所以原点 (0,0)不在2xy50表示的平面区域内,不等式2xy50表示的区域如图所示(阴影部分),即在直线2xy50的右上方故选A.,2.不等式3x+2y60表示的平面区域是( ),D,【解析】分别将P1、P2、P3点坐标代入3x2y1,比较发现只有3020110,故P1点不在此平面区域内,P2、P3均在此平面区域内,C,4已知点(a,2a1),既在直线y3x6的左上方,又在y轴的右侧,则a的取值范围为_ 【解析】(a,2a1)在y3x6的上方, 3a-6-(2a1)0,故0a5.,(0,5),5.画出不等式x1表示的平面区域.,解析:,回顾本节课你有什么收获?,1. 二元一次不等式表示的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年江苏省盐城市东台市物理高一第二学期期末统考模拟试题含解析
- 冬春季传染病防治
- 2025年山西省风陵渡中学物理高二第二学期期末经典模拟试题含解析
- 2025届甘肃省白银市二中物理高一第二学期期末综合测试模拟试题含解析
- 2025版:文化娱乐产业合作补充协议文化娱乐权益拓展
- 2025年度高端不锈钢厨具加工定制服务合同范本
- 二零二五版太阳能光伏发电项目施工安装合同样本
- 二零二五年藏式建筑装修合作协议
- 二零二五年度森林资源调查与测绘服务合同
- 二零二五年体育设施PPP项目特许经营合同
- 民丰县瑞安矿业投资有限公司民丰县卧龙岗年处理30万吨锑矿选厂及尾矿库建设项目报告书
- 山东济宁历年中考作文题(2004-2024)
- 合同债权转让及违约金协议
- 售后服务电话回访管理办法
- 《中国糖尿病防治指南(2024版)》更新解读
- 浙江省台州市温岭市2023-2024学年五年级上学期英语期末试卷
- 水稳质量保证措施
- 幼儿园6S户外管理
- 《高性能计算 分布式存储系统技术要求》
- 老年人能力评估师工种竞赛题及答案
- 2025行政执法证考试必考题库(含答案)
评论
0/150
提交评论