初高中数学优等生设计方案_第1页
初高中数学优等生设计方案_第2页
初高中数学优等生设计方案_第3页
初高中数学优等生设计方案_第4页
初高中数学优等生设计方案_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、初高中数学衔接教材现有初高中数学知识存在以下“脱节”1立方和与差的公式初中已删去不讲,而高中的运算还在用。2因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。3二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。4初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。5二次

2、函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。6图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。7含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容视为重难点。方程、不等式、函数的综合考查常成为高考综合题。8几何部分很多概念(如重心、垂心等)和定理(如平行线分线段比例定理,射影定理,相交弦定理等)初中生大都没有学习,而

3、高中都要涉及。另外,像配方法、换元法、待定系数法初中教学大大弱化,不利于高中知识的讲授。1乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 ;(2)完全平方公式 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 ;(2)立方差公式 ;(3)三数和平方公式 ;(4)两数和立方公式 ;(5)两数差立方公式 例1 计算:解法一:原式=解法二:原式=例2 已知,求的值解: 2、二次根式1分母(子)有理化例1计算: ; 解法一: 解法二: 例2 已知,求的值 解:,练 习1填空:(1)_ _;(2)若,则_ _ 3、分解因式1十字相乘法例1 分解因式: (1)x23x2; (2)

4、x24x12; (3); (4) 解:(1)如图121,将二次项x2分解成图中的两个x的积,再将常数项2分解成1与2的乘积,而图中的对角线上的两个数乘积的和为3x,就是x23x2中的一次项,所以,有x23x2(x1)(x2)aybyxx图1242611图1231211图12212xx图121说明:今后在分解与本例类似的二次三项式时,可以直接将图121中的两个x用1来表示(如图122所示)(2)由图123,得x24x12(x2)(x6)(3)由图124,得11xy图125 (4)xy(xy)1(x1) (y+1) (如图125所示)2提取公因式法与分组分解法3关于x的二次三项式ax2+bx+c(

5、a0)的因式分解若关于x的方程的两个实数根是、,则二次三项式就可分解为.练 习1选择题:多项式的一个因式为 ( )(A) (B) (C) (D)2分解因式:(1)x26x8; (2)8a3b3;4、 根与系数的关系(韦达定理) 若一元二次方程ax2bxc0(a0)有两个实数根如果ax2bxc0(a0)的两根分别是x1,x2,那么x1x2,x1x2这一关系也被称为韦达定理例1 若x1和x2分别是一元二次方程2x25x30的两根(1)求| x1x2|的值; (2)求的值;(3)x13x23解:x1和x2分别是一元二次方程2x25x30的两根, ,)(3)x13x23(x1x2)( x12x1x2x

6、22)(x1x2) ( x1x2) 23x1x2 ()()23()说明:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题,为了解题简便,我们可以探讨出其一般规律:设x1和x2分别是一元二次方程ax2bxc0(a0),则,| x1x2| 于是有下面的结论:若x1和x2分别是一元二次方程ax2bxc0(a0),则| x1x2|(其中b24ac)例2 若关于x的一元二次方程x2xa40的一根大于零、另一根小于零,求实数a的取值范围解:设x1,x2是方程的两根,则 x1x2a40, 且(1)24(a4)0 由得 a4,由得 aa的取值范围是a4练习:1、 一元二次方程x

7、2+px+q=0两个根分别是2+和2,则p= ,q= ;2、 已知方程3x219x+m=0的一个根是1,那么它的另一个根是 ,m= ;3、 若方程x2+mx1=0的两个实数根互为相反数,那么m的值是 ;4、 已知关于x的方程x2(k+1)x+k+2=0的两根的平方和等于6,求k的值;5、 已知方程x23x+1=0的两个根为,,则+= , = ;6、 已知方程2x23x+k=0的两根之差为2,则k= ;7、 若方程x2+(a22)x3=0的两根是1和3,则a= ;8、 若关于x的方程x2+2(m1)x+4m2=0有两个实数根,且这两个根互为倒数,那么m的值为 ;9、 设x1,x2是方程2x26x

8、+3=0的两个根,求下列各式的值:(1)x12x2+x1x22 (2) 5、 一元二次不等式解法一、主要知识:1、一元二次方程、一元二次不等式与二次函数的关系2、一元二次不等式的解法步骤一元二次不等式的解集:设相应的一元二次方程的两根为,则不等式的解的各种情况如下表: 二次函数()的图象一元二次方程有两相异实根有两相等实根 无实根 R 例1 解不等式: (1)x22x30; (2)xx260; (3)4x24x10; (4)x26x90; (5)4xx20 例2 解关于x的不等式例3 已知不等式的解是求不等式的解6、含绝对值的不等式1绝对值的意义是:.2xa(a0)的解集是 xa(a0)的解集是 例1:解下列不等式:(1)|23x|2;(2)|3x2|2例2:解不等式22x57解法一:原不等式等价于即解法二:原不等式的解集是下面两个不等式组解集的并集()() 练习:1不等式1x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论