版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1.掌握“边边边”公理,并熟练运用它证明两个三角形全等. 2.能运用“边边边”公理解决简单的实际问题. 3.经历探索三角形全等过程.,重点:应用“边边边”公理证明三角形全等. 难点:寻求三角形全等的条件.,12.2 三角形全等的判定,第一课时,阅读课本P35-37页内容,了解本节主要内容.,全等,形状,SSS,边边边,大小,同学们知道,如果两个三角形全等,那么它们的对应边相等,对应角也相等.反过来如果两个三角形的三条边对应相等,三个角对应相等,那么这两个三角形也就一定全等.是不是一定要满足这六个条件,才能保证三角形全等呢?条件能否少一些?,1.先任意画出一个ABC,再画一个ABC,使ABAB,
2、BCBC,CACA,把画好的ABC剪下来,放到ABC上,它们全等吗?,探究:三角形全等的判定方法“边边边”,ACE,ADBADC,BC=ED,ACD,解:,在ABD和ACD中, ABAC(已知),ADAD(公共边),BDCD(中点的定义),,ABDACD(SSS),例:如图,AB=ED,AC=EC,C是BD边上的中点,若A=35,B=125.求ACE的度数.,解析:,根据“边边边”定理可证ABCEDC,可得ACBECD.在ABC中,利用三角形内角和定理可求ACB180-A-B20,所以ECD20.由平角的定义知ACE180-ACB-ECD140.,解:,在ABC中,ABACB180,,ACB20.在ABC和EDC中,,ABED ACEC BCDC,,ABCEDC,ECDACB20.,又ACBACEECD180,,ACE1802020140.,SSS,25,55,解:,连接AD.在ABD与DCA中,,ABDC DBAC ADDA,,ABDDCA(SSS),,BC,证明:,AF=CE,AD=CB DE=BF AE=CF,,ADECBF(SSS).,AF+EF=CE+EF, AE=CF,在ADE和CBF中,本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年汽车维修技师专业能力测试题库
- 竖井钻机工安全技能测试水平考核试卷含答案
- 农副土特产品收购员岗前技术突破考核试卷含答案
- 2026年投资经理面试考核内容与市场分析能力
- 2026年脱硝工作质量考核与评价标准
- 呼叫中心服务员岗前岗位水平考核试卷含答案
- 光学普通磨工岗前班组管理考核试卷含答案
- 2026年工程项目经理职位的考题与解析
- 2026年生物科技公司投资经理选拔题库
- 2026年美团平台IT运维工程师面试宝典及答案
- 管道检修方案(3篇)
- 旧物业交接协议书
- 马来酸酐接枝聚丙烯的研究与应用进展
- 医疗机构医保数据共享管理制度
- 人工智能通识教程 第2版 课件 第12章 GPT-大语言模型起步
- 大疆无人机租赁合同协议书
- 网络新闻评论智慧树知到期末考试答案章节答案2024年西南交通大学
- FreeCAD从入门到综合实战
- 药房药品安全管理月检查表
- 下潘格庄金矿开发前景分析校正版
- 运输合同普通版
评论
0/150
提交评论