




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、简单的线性规划,用“上方”或“下方”填空 (1)若B0, 不等式Ax+By+C0表示的区域是直线Ax+By+C=0的 不等式Ax+By+C0表示的区域是直线Ax+By+C=0的 不等式Ax+By+C0表示的区域是直线Ax+By+C=0的,上方,下方,下方,上方,复习一元二次不等式表示区域,画出不等式组 表示的平面区域。,x+y=0,x=3,x-y+5=0,复习巩固,问题:z=2x+y 有无最大(小)值?,一、实际问题,某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按
2、每天工作8h计算,该厂所有可能的日生产安排是什么?,解:按甲、乙两种产品分别生产x、y件,由已知条件可得二元一次不等式组,将上述不等式组表示成平面上的区域,图中的阴影部分中的整点(坐标为整数)就代表所有可能的日生产安排。,y,x,4,8,4,3,o,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用那种生产安排利润最大?,设工厂获得的利润为z,则z2x3y,把z2x3y变形为 它表示斜率为 的直线系,z与这条直线的截距有关。,如图可见,当直线经过可行域上的点M时,截距最大,即z最大。,M,二、基本概念,y,x,4,8,4,3,o,把求最大值或求最小值的的函数称为目标函数,因为它是关于变
3、量x、y的一次解析式,又称线性目标函数。,满足线性约束的解 (x,y)叫做可行解。,在线性约束条件下求线性目标函数的最大值或最小值问题,统称为线性规划问题。,一组关于变量x、y的一次不等式,称为线性约束条件。,由所有可行解组成的集合叫做可行域。,使目标函数取得最大值或最小值的可行解叫做这个问题的最优解。,可行域,可行解,最优解,设z=2x+y,式中变量满足 下列条件: 求z的最大值与最小值。,目标函数 (线性目标函数),线性约 束条件,可行域,例题:,可行域,2x+y=3,2x+y=12,(1,1),(5,2),z=2x+y,变式: 上例若改为求z=2x-y的最大值、最小值呢?,第一步:作出可
4、行域; 第二步:作直线ax+by=0 第三步:移动直线,在可行域内找到最优解所对应的点; 第四步:解方程的最优解(即求点的坐标),从而求出目标函数的最大值或最小值。,线性规划解题步骤:,练习题:,1、求z2xy的最大值,使x、y满足约束条件:,2、求z3x5y的最大值,使x、y满足约束条件:,1.解:作出平面区域,x,y,A,B,C,o,z2xy,作出直线y=2xz的图像,可知z要求最大值,即直线经过C点时。,求得C点坐标为(2,1),则Zmax=2xy3,2.解:作出平面区域,x,y,o,A,B,C,z3x5y,作出直线3x5y z 的图像,可知直线经过A点时,Z取最大值;直线经过B点时,Z
5、取最小值。,求得A(1.5,2.5),B(2,1),则Zmax=17,Zmin=11。,注意:,1、线性目标函数的最大(小)值一般在可行域的顶点处取得,也可能在边界处取得。 2、求线性目标函数的最优解,要注意分析线性目标函数所表示的几何意义-与y轴上的截距相关的数。,例1、营养学家指出,成人良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg的蛋白质,0.06kg的脂肪,1kg食物A含有0.105kg碳水化合物,0.07kg蛋白质,0.14kg脂肪,花费28元;而1食物B含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元。为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A和食物B多少kg?,分析:将已知数据列成表格,三、例题,解:设每天食用xkg食物A,ykg食物B,总成本为z,那么,目标函数为:z28x21y,作出二元一次不等式组所表示的平面区域,即可行域,把目标函数z28x21y 变形为,x,y,o,5/7,5/7,6/7,3/7,3/7,6/7,它表示斜率为 随z变化的一组平行直线系,是直线在y轴上的截距,当截距最小时,z的值最小。,M,如图可见,当直线z28x21y 经过可行域上的点M时,截距最小,即z最小。,M点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 管理创新方法试题及答案
- 贵州中考语文答案及试题
- 防火培训试题及答案
- 小院经济面试题及答案
- 西方国家的电力政策与国际关系试题及答案
- 现代文学小说主题应用题集
- 项目管理中的网络安全策略试题及答案
- 机电工程流体控制试题汇编
- 软件设计中的用户角色分配与试题答案
- 探讨2025年机电工程的国际化趋势试题及答案
- 尾矿库巡查记录表
- 2022年北京海淀区八年级下学期期末生物试卷(含答案)
- 公路质量控制要点及质量通病防治手册(含图)
- 《乘风破浪的姐姐》招商方案
- 工业漆水性丙烯酸防护msds
- 2022年事业单位招聘考试(畜牧兽医)综合试题库及答案
- 《民国人物大辞典》附名录
- 消防管理制度的制作张贴规范及图例
- DB4403∕T 199-2021 中医药健康文化宣教旅游示范基地评定规范
- 福州供电段接触网设备检修工艺
- 工装治工具管理程序(含表格)
评论
0/150
提交评论