下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、基本不等式知识点:1. (1)若,则(2)若,则(当且仅当时取“=”)2. (1)若,则(2)若,则(当且仅当时取“=”) (3)若,则 (当且仅当时取“=”)3.若,则 (当且仅当时取“=”)若,则 (当且仅当时取“=”)若,则 (当且仅当时取“=”)4.若,则 (当且仅当时取“=”)若,则 (当且仅当时取“=”)5.若,则(当且仅当时取“=”)注意:(1) 当两个正数的积为定植时,可以求它们的和的最小值, 当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解
2、决实际问题方面有广泛的应用应用一:求最值例:求下列函数的值域(1)y3x 2 (2)yx技巧一:凑项例 已知,求函数的最大值。技巧二:凑系数例: 当时,求的最大值。变式:设,求函数的最大值。技巧三: 分离换元例:求的值域。技巧五:在应用最值定理求最值时,若遇等号取不到的情况,结合函数的单调性。例:求函数的值域。技巧六:整体代换(“1”的应用)多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。例:已知,且,求的最小值。技巧七例:已知x,y为正实数,且x 21,求x的最大值.技巧八:已知a,b为正实数,2baba30,求函数y的最小值.技巧九、取平方例: 求函数的最大值。应用二:利用均值不等式证明不等式例:已知a、b、c,且。求证:应用三:均值不等式与恒成立问题例:已知且,求使不等式恒成立的实数的取值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025河北石家庄医学高等专科学校附属医院招聘医护人员备考考试题库及答案解析
- 商铺租赁水电费分摊合同协议2025
- 商铺租赁合同2025年标准范本
- 商铺装修期间噪音控制合同协议
- 软件开发2025年实习协议
- 企业咨询服务合同2025年成果交付
- 买卖合同2025年质量保证协议
- 2025年商业秘密保护与竞业限制考试试题及答案
- 跨境电商平台合作协议2025年标准
- 2025年领导者的激励艺术与技巧考试试题及答案
- 劳动课认识几种农具课件
- 大数据技术职业规划
- 2024年度网络安全培训(安全意识)课件
- 透析病人心律失常的护理
- 兔子介绍课件
- 仓库货物异常管理制度
- 《中国传统文化》课件完整版
- 工会设施使用管理制度
- 《股票投资入门》课件
- (高清版)DB50∕T 1093-2021 城市隧道养护技术规范
- 检验科SOP文件 程序文件范本
评论
0/150
提交评论