




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一、 教案背景1,面向学生: 中学 小学 2,学科:数学 2,课时:3,学生课前准备:一、 学生自学课本。二、 找一找现实生活中的直线与圆位置关系的实例二、 教学课题 直线与圆的位置关系知识目标:使学生理解直线和圆的三种位置关系,掌握其判定方法和性质;能力目标:通过直线和圆的位置关系的探究,向学生渗透分类、数形结合的思想,培养学生观察、分析和概括的能力;情感目标:使学生从运动的观点来观察直线和圆相交、相切、相离的关系、培养学生的辩证唯物主义观点三、 教材分析 本节学习的主要内容是,直线与圆的位置关系第一课时的知识。这节课是学习切线的性质和判定的前提。对圆的进一步认识这一章,是对圆的有关性质、与
2、圆有关的位置关系的系统研究。在圆的位置关系中,直线与圆的位置关系是比较重要的一部分。圆的有关性质,被广泛地应用于工农业生产、交通运输等方面,所涉及的数学知识较为广泛;学好本章内容,能提高解题的综合能力。而本节的内容在学习点与圆的位置关系之后进行,它体现了运动的观点,是研究有关性质的基础,也为后面学习圆与圆的位置关系及高中继续学习几何知识作铺垫。 四、 教学方法教学中依探究教学法为主,整堂课紧紧围绕“情景问题学生体验合作交流”的模式,并发挥微机的直观、形象功能辅助演示直线与圆的位置关系,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维。这样,一方面可激发学生学习的兴趣,提高学
3、生的学习效率,另一方面拓展学生的思维空间,培养学生用创造性思维去学会学习。五、 教学过程(一)、情境导入同学们在海边看过日出吗?下面请同学们欣赏一段视频,海边看日出视频: /show/Dko-G1sq0LP7A9s8F9D5CQ.html学生思考:如果我们从数学的角度看到的是怎样几何图形?:请同学们猜想并动手画一画。学生画一画,然后,导入新课,这就是今天我们要学习的直线与圆的位置关系。(二)自主学习:提出问题(让学生带着问题去看课本,自主学习):(1)、概括直线与圆的有哪几种位置关系,你是怎样区分这几种位置关系的?(2)、如何用语言描述三种位置关系?让学生先阅读课
4、本内容,自己归纳以上三个问题。学生回答,教师点拨。 (三)合作探究: 分小组讨论: 如果直线和圆的位置关系是相交、相切、相离时,一定有d r成立吗?如何判断直线和圆的位置关系?想想看,你有几种方法?学生讨论交流,小组展示成果教师引导学生归纳: 问题:一定成立。故:d与r的关系与直线和圆的位置关系是互逆的。即:知d与r的关系可判断直线和圆的位置关系;知直线和圆的位置关系可得到d与r的关系 相交 d r问题:判断直线和圆的位置关系的方法有两种:根据公共点的个数、根据d与r的关系。设计意图:通过生生互动、师生互动,解疑答惑,即让学生对新知识有一个再认识的过程,进一步深化对知识的理解和掌握;又培养了学
5、生的团结协作、相互交流的精神。(四)、典型例题例、在RtABC中, C=90,AC=3cm, BC= 4cm, 则以C为圆心,r为半径的圆和AB有怎样的位置关系?(1)r =2cm, (2) r =2.4cm (3) r =3cm解: 过C 作CDAB,垂足为D, 在R t ABC中,AB AB=5根据三角形的面积公式有: CDAB =ACBC CD =ACBC / AB = 3 4/ 5 = 2.4即圆心C到AB的距离 d=2.4cm 当r =2cm时,有d r ,因此C和AB相离; 当r =2.4cm时,有 d r ,因此C和AB相切; 当r =3 cm时,有d r ,因此C和AB相交(五
6、)、提升练习1、(1)已知O的直径是6cm,O到直线a的距离是4cm,则O与直线a的位置关系是 _ _。(2)已知3 O的半径为6cm,O到直线a的距离为7cm,则直线a与O的公共点个数是_。(3)直线和圆相交,圆的半径为r,且直线到圆心的距离为,则有( )A. r 5 C. r = 5 D. r 5(4). O的最大弦长为,直线与相离,若圆心到直线的距离为d,则有( ) A. d 8 B. d 4 D. d 4(5). 若直线与O至少有一个公共点, 则此直线与O的位置关系是 ( ) A. 相交或相切 B. 相交或相离 C. 相切或相离 D. 上三种情况都有可能2、已知O的直径为12cm(1)
7、若圆心O到直线l的距离为12cm,则直线l与O 的位置关系为_;(2)若圆心O到直线l的距离为6cm,则直线l与O 的位置关系为_;(3)若圆心O到直线l的距离为3cm,则直线l与O 的位置关系为_3、已知O的直径为10cm(1)若直线l与O相交,则圆心O到直线l的距离为_(2)若直线l与O相切,则圆心O到直线l的距离为_(3)若直线l与O相离,则圆心O到直线l的距离为_六、 巩固检测: 1已知圆的直径为1.3cm,圆心到直线z的距离为6cm,那么直线l和这个圆的公共点的个数是 2已知0半径为4cm,直线l与O相交,则圆心O到直线l的距离d的取值范围是 3圆心O到直线l的距离为d,O的半径为r
8、,当d与r是方程x2-9x+20=0的两根时,直线l与0的位置关系是 4设0的半径为r,圆心O到直线l的距离为d,若直线l与0有交点,则d与r的关系是( )Ad=r Bdr Ddr5下列直线是圆的切线的是( )A与圆有公共点的直线B到圆心的距离等于半径的直线C到圆心的距离大于半径的直线D到圆心的距离小于半径的直线6在RtABC中,C=900,B=300,O是AB上的一点,OA=m,0的半径为r,当r与m满足怎样的关系时,(1)直线AC与0相交? (2)直线AC与0相切?(3)直线AC与0相离?七、反思归纳。请谈谈本节课你有什么收获?你还想知道什么?1、直线与圆的位置关系3种:相离、相切和相交。
9、2、识别直线与圆的位置关系的方法: (1)一种是根据基本概念进行识别: 直线L与o没有公共点 直线L与o相离。 直线L与o只有一个公共点 直线L与o相切。 直线L与o有两个公共点 直线L与o相交。 (2)另一种是根据圆心到直线的距离d与圆半径r数量 比较来进行识别: dr 直线L与o相离; d=r 直线L与o相切; dr 直线L与o相交。布置作业:课本127页第2题七、 教学反思在直线和圆的位置关系这节课中,我首先由生活中的情景海上日出,让学生发现地平线和太阳位置关系的变化,从而引出课题:直线和圆的位置关系。然后由学生自主探索发现直线和圆的三种位置关系,给出定义,联系实际,由学生发现日常生活中
10、存在的直线和圆相交、相切、相离的现象,紧接着引导学生探索三种位置关系下圆心到直线的距离与圆半径的大小关系,由“做一做”进行应用,最后去解决实际问题。通过本节课的教学,我认为成功之处有以下几点:1.由日出的三张照片(太阳与地平线相离、相切、相交)引入,学生比较感兴趣,充分感受生活中反映直线与圆位置关系的现象,体验到数学来源于实践。对生活中的数学问题发生好奇,这是学生最容易接受的学习数学的好方法。新课标下的数学教学的基本特点之一就是密切关注数学与现实生活的联系,从生活中“找”数学,“想”数学,让学生真正感受到生活之中处处有数学。在探索直线和圆位置关系所对应的数量关系时,我先引导学生回顾点和圆的位置
11、关系所对应的数量关系,启发学生运用类比的思想来思考问题,解决问题,学生很轻松的就能够得出结论,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化,这种等价关系是研究切线的理论基础,从而为下节课探索切线的性质打好基础。同时,我也感觉到本节课的设计有不妥之处,主要有以下二点:1虽然我在设计本节课时是体现让学生自主操作探究的原则,但在让学生探索直线和圆三种位置关系所对应的数量关系时,没有给予学生足够的探索、交流的时间,限制了学生的思维。此处应充分发挥小组的特点,让学生相互启发讨论,形成思维互补,集思广益,从而使概念更清楚,结论更准确。2对“巩固训练”的处理不够,这一环节是对探究的成绩与效果的探索与检验,重在帮助学生掌握方法,我在讲解时,没有充分展示解题思路,没有及时进行方法上的总结,致使部分学生在解决实际问题时思路不明确。教师要根据情况,简要归纳、概括应掌握的方法,使学生能够举一反三,巩固和扩大知识,吸收、内化知识。总之,新课程的课堂教学要让学生作为课堂教学的主体参与到课堂教学过程中来,充分展现自己的个性,施展自己的才华,使学生在参与和体验的过程中真正成为学习的主人,养成勇于探索、敢于实践的个性品质。与此同时,教师还要为学生的学习创造探究的环境,营造探究的氛围,促进探究的开展,把握探究的深度,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地铁上学生做数学试卷
- 富平县中考二模数学试卷
- 肌肤护理流程课件
- 福州中学半期考数学试卷
- 辅仁高级中学数学试卷
- 高青一中数学试卷
- 肉牛养殖技术课件
- 2024年11月河南省内黄兴福村镇银行招考9名工作人员笔试历年参考题库附带答案详解
- 黔南贵定县“雁归兴贵•才聚麦溪”人才引进考试真题2024
- 典中点苏教数学试卷
- 国家开放大学《监督学》形考任务( 1-4)试题和答案解析
- 婚前协议书(完整版)-婚前协议书模板
- 完工付款最终付款申请表
- 人工动静脉内瘘
- 新版(七步法案例)PFMEA
- 2022年重庆优秀中考作文经典范例合集-2022中考作文
- 采暖管道安装工程标准规范
- 慢阻肺随访记录表正式版
- 广西大学数学建模竞赛选拔赛题目
- 受戒申请表(共3页)
- 低钠血症的护理
评论
0/150
提交评论