钢板弹簧总成.dwg
钢板弹簧总成.dwg

0002-柴油SUV后驱动桥与后悬架的设计【CAD图纸+文档】

收藏

压缩包内文档预览:
预览图
编号:98918145    类型:共享资源    大小:4.99MB    格式:ZIP    上传时间:2020-10-18 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
CAD图纸+文档 0002 柴油 SUV 驱动 悬架 设计 CAD 图纸 文档
资源描述:

喜欢就充值下载吧。。。资源目录里展示的全都有,,下载后全都有,,请放心下载,原稿可自行编辑修改【QQ:1304139763 可咨询交流】===================== 喜欢就充值下载吧。。。资源目录里展示的全都有,,下载后全都有,,请放心下载,原稿可自行编辑修改【QQ:414951605 可咨询交流】=====================

内容简介:
毕 业 设 计(论 文) 题目 柴油动力SUV车设计-后驱动桥、后悬架设计毕业设计(论文)开题报告(学生填表)院系: 车辆与动力工程学院 2007 年 04月 01 日课题名称柴油动力SUV车设计-后驱动桥、后悬架设计学生姓名专业班级课题类型指导教师职称副教授课题来源1. 设计(或研究)的依据与意义Suv起源于美国20世纪80年代,SUV是为迎合青年白领阶层的爱好而在皮卡的底盘上发展起来的一种箱体车。SUV的英文含义是sport utility vechicle意思就是运动型多用途汽车。SUV一般前悬挂是轿车型的独立悬架,离地间隙大,一定程度上就有轿车的舒适性又有越野车的越野性,提高了此种车存在的价值。 驱动桥对于SUV的越野性来说是一重要环节.驱动桥处于传动系的末端,基本功能是增大由传动轴传来的转矩,将动力合理的分配给左右驱动轮,另外,还承受作用于路面和车架或车身之间的垂直力、纵向力和横向力。驱动桥一般由主减速器、车轮传动装置和驱动桥壳等组成。 后悬架对于SUV的舒适性也相当重要。悬架最主要的功能是传递作用在车轮和车架之间的一切力和力矩,并缓和汽车驶过不平路面时所产生的冲击,衰减由此引起的承载系统的震动,以保证汽车的行使平顺性。2. 国内外同类设计(或同类研究)的概况综述目前,驱动桥的机构型式按其总体布置来说共有三种,即普通的非断开式驱动桥,带有摆动半轴的非断开式驱动桥和断开式驱动桥。按其工作特性,它们又可归并为两大类,即非断开式驱动桥和断开式驱动桥。主减速器采用的最广泛的是“格里森”制或“奥里康制的螺旋锥齿轮和双曲面齿轮。在双级主减速器中,通常还要加一对圆柱齿轮或一组行星齿轮。在轮边减速器中则常采用普通的平行轴式布置的斜齿圆柱齿轮传动或行星齿轮传动,在某些柴油汽车,无轨电车或超重型汽车的主减速器上,有时也采用涡轮传动。差速器按结构形式有如下几种:对称式锥齿轮差速器,强制式锁止差速器,自锁式差速器。汽车悬架尽管经历一百多年的不断演进,但从结构功能而言,它都是由弹性元件,减震装置和导向机构三部分组成。悬架按结构形式分为独立悬架和分独立悬架,独立悬架又分为双横臂式独立悬架,麦浮孙式独立悬架,滑柱摆臂式后悬架,纵臂式后悬架,或斜臂式后悬架,单臂式独立悬架。按照弹性元件分为钢板弹簧悬架,螺旋弹簧悬架,扭杆弹簧悬架。按作用原理可分为被动悬架,主动悬架和介于两者之间的半主动悬架。我的设计是柴油动力SUV车的后驱动桥和后悬架设计,并且本车为中档经济型SUV。那么为了兼顾其越野性采用整体式后驱动桥,为了增大其离地间隙采用准曲面锥齿轮的主减速器。后悬架匹配的是非独立悬架,采用钢板弹簧和筒式减震器,其适应SUV的各项功能需要,并且降低其成本。3. 课题设计(或研究)的内容柴油动力SUV-后驱动桥设计,后悬架设计SUV乘用车的参数为:发动机采用柴油发动机,最高车速为130km/h,最 小转弯半径5.0m,成员数45人,档位数4+1,载重量0.5吨。4. 设计(或研究)方法1以当前市场上的SUV为参照,设计按照其经济,实用,耐用为主体,使其尽量降低经济成本的同时又能保证质量。2借鉴先进SUV的技术,在一般车型上进行改进设计,达到设计要求目的的同时使其更有创新性。3以小组讨论为导向,以各个成员的设计内容为参照,相互讨论,达到设计自己内容的同时又能兼顾小组成员的设计,达到整体车型的设计要求。5. 实施计划(56周) 学生进行调研,搜集分析资料,完成开题报告(4月11日交)(67周) 全组集体讨论,确定总体方案。每个学生确定自己的设计内容与绘图数量。(89周) 整理本设计内容的相关资料,进行必要的理论计算,拟定说明书草稿。搜集相关外文资料并翻译。(1011周) 完成主要总图设计。(1213周) 完成零部件图设计,并完成机绘图。(1415周) 按要求整理,编写设计说明书。(16周) 整理图纸及全部设计文件,准备上交。(17周) 审阅,评阅设计资料,答辩,评定成绩指导教师意见指导教师签字: 年 月 日研究所(教研室)意见研究所所长(教研室主任)签字: 年 月 日车辆与动力工程学院毕业设计说明书柴油SUV后驱动桥与后悬架的设计摘 要车桥有两种基本形式:非断开式和断开式。非断开式车桥不转动,而车轮在车桥上转动。最常见的例子就是在马车上所见到的非断开式车桥。断开式车桥与车轮相连接,这样两者一起转动。断开式车桥根据其承载方式可分为:半浮式,四分之三浮式和全浮式。后桥与车轮相连,内端装有一个半轴齿轮。差速器壳支撑在左侧车桥上,而且能够在轴承上做独立转动。差速器壳支承在行星齿轮轴上,行星齿轮与两个半轴齿轮相啮合。冠状齿轮与差速器壳相连接,这样当冠状齿轮由传动齿轮驱动转动时,差速器壳也转动。也就是说,驱动力是从传动轴末端的传动齿轮输送到差速器的。当汽车直线行驶时,两个行星齿轮不在齿轮轴上转动,但却向两个半轴齿轮传递动力,这样半轴齿轮与冠状齿轮的转速相等。从而使两个后轮也以同样的速度转动。当汽车转弯时,外侧车轮就必须比内侧车轮转的更快。为了达到这一目的,两个行星齿轮在齿轮轴上传动,给外侧的车轮提供比内侧的车轮更多的运动,这样外侧车轮轴上的半轴齿轮比内侧车轮轴上的半轴齿轮转动的更快。目前使用的悬挂系统基本上为两种,一种是整体桥与刚板弹簧组成的非独立悬架,另一种是使用长短摆臂的独立悬架。这些悬挂系统有各种不同的搭配,但是均运用相同的工作原理。非独立悬挂使用整体式车桥,两侧用钢板弹簧连接。通过装在轮轴和车桥之间的驱动轴,两端的车轮可以转动。使用独立悬架,每个车轮都可以自由的上下运动,几乎不受另一车轮的影响。关键词:车桥,行星齿轮,半轴齿轮,非独立悬架,独立悬架,钢板弹簧DIESEL-POWERED SUV DESIGNREAR AXELS AND SUSPENSIONABSTRACTThere are two basic tyes of axle:dead axleds and live axle.The dead axle does not rotate:the wheel rotates on it .A common example is the axle on a horse drawn wagon.Live axles are attached to the wheel so that both the wheel and the axle rotate together.Live axles are classified accorading to manner in which they are supported:semifloating,three-quarter-floaring,and full-floating.The rear axles are attached to the wheels and have bevel side gears on their inner ends.The differential case isassembled on the left axle but can rotate on a bearing independently of the axle.The differential case supports the differdntial-pinion gear on a shaft,and this gear meshs with the two bevel gears.The ring gear is attched to the differential case so that the case rotates with the ring gear when the latter is driven by the drive pinpion.The driving power enters the diffential throuth the drive pinpion on the end of the ropeller shaft.When the car is on a straight road ,the two differential-pinion gears do not rotate on the pinion shaft ,but they do exert pressure on the side gear,causing both rear wheels to turn at the same speed ,also.When the car rounds a curve ,the outer wheel must turn faster than the inner wheel.To permit this,the two pinion gears rotate on their pinion shaft,transmitting more turning movement to the outer side gear than to the inner side gear.Thus the side gear on the outer-wheel axle turns more rapidly than the side gear on the inner-wheel axle .There are two basic suspension systems is use today.One is the solid axle,leaf spring type;the other is the independent suspension using long and short swing arms.There are various sdaptations of these systenms,but all use the same basic principle.The solid axle suspension uses a solid steel dead axle with a leaf spring at each side.The wheels swivel on each end via a pivot arrangment between the axle and the wheel spindle.With independent suspension,each wheel is free to move up and down with minimum effect on the other wheel. Key word: Rear axles,differential-pinion gear,bevel side fears,solid axle,independent suspension,leaf spring.符号说明rr: 车轮的滚动发半径np: 最大功率时发动机的转速vamax: 最高车速igH: 变速器最高档传动比Temax: 发机最大转矩N: 驱动桥数目iTL: 由发动机至所计算的主减速器从动齿轮之间的传系最档传动比T:上述传动部分传动效率K0:离合器产生冲击载荷时超载系数G2: 满载时一个驱动轮上的静载荷系数: 轮胎与路面间的附着系数rr: 车轮的滚动半径lB ilB : 分别为所计算的主减速器从动齿轮到驱动车轮之间的传动效率和传动比p:单位齿长上的圆周力 N/mm ig:变速器档传动比d1:主动齿轮节圆直径F:动齿轮的齿面宽: 半轴的扭转应力T :半轴的计算转矩d:半轴杆部直径 K :超载系数Ks:尺寸系数,反映材料性质的不均匀性,与齿轮尺寸及热处理等有关。Km:载荷分配系数Kv:质量系数,对于汽车驱动桥齿轮,当齿轮接触良好、周节及径向跳动精度高时目 录第一章 前 言 1第二章 驱动桥的设计 22.1 驱动桥概述 22.2 驱动桥型式及选择3第三章 主减速器的设计 43.1 主减速器结构方案分析43.2 主减速比及计算载荷的确定 43.3 主减速器齿轮主要参数的计算63.4 主减速器齿轮强度计算 203.5 主减速器齿轮的材料及热处理 22第四章 差速器的设计 234.1 差速器机构方案分析 234.2 差速器齿轮参数的计算 244.3 差速器齿轮强度计算 26第五章 半轴及桥壳设计 285.1 半轴的设计计算 285.2 桥壳的设计 31第六章 后悬架 336.1 钢板弹簧的设计 336.2 筒式减振器 35第七章 结 论37参考文献 38致 谢 39IV外文资料译文英文翻译98页 汽车底盘与车身如图2.12所示,子午线轮胎速度的分类是以当前速度标记,终止尺度和以前速度标记为基础的。轮胎制造商将VR和ZR作为轮胎最大速度的标志符号。F和M的意思是在紧急情况下所用的备胎。 个别轮胎上仍然用以前的表示方法:例如 155SR13 155-新型轮胎和82系列的宽度 S-速度标记 R-子午线轮胎 13-轮缘直径(用英寸表示)2.2.5.2 美国乘用车的轮胎和尺寸标准美国和欧洲国家采用“P“来表示轮胎,并且用来说明轮胎的断面比值。 如:P 155/80 R 13 79 S轮胎旧的速度表示方式用V=210km/h(或240km/h),沿用至1992年;保时捷的928S型汽车采用这种标记方法,例如: 225/50 VR 16 V-速度符号 R-子午线轮胎99页 轮胎和车轮 官方公文阐明了承载和气压的关系。在乘用车上把承载能力也就是载重说明(L1)当作速度标志,这些关系到车速160km/h,胎压2.5bar时的最小承载能力。车辆上未来的标准例如最高车速等对于轮胎气压是相当重要的。由于L1用在100km/h以上,所以将来的承载量的曾加是每一次曾25kg。 L1=101 表示825kg L1=102 表示850kg L1=108 表示1000kg100页 汽车底盘与车身ETRTO标准手册里的轮胎承载能力以承载指数L1形式表示是有效的,因为V型胎表示车速可达到210km/h,W型胎可达到240km/h,Y型胎可达到270km/h。在较高车速时,承载能力就会有较低的百分比的问题必须要解决;因为VR和ZR型的轮胎不再生产,由于它们的价值问题汽车和轮胎的生产商对其生产进行了控制。 下面是有关VR型轮胎的注释:1.超过210km/h并且达到220km/h(包括在内),承载量仅能是正常情况下的90%。2.超过220km/h时,车速每曾加10km/h其搬运量至少将降低5%。2.2.5.3轻型商用汽车轮胎的表示对于乘用车来说,轻型商业性汽车轮胎有更强的结构,因此能承受较高的气压,也就意味着有更高的承载能力。在轻型乘用车上,用表示经久耐用的字母“C“来表示其适用性,或者”强有力“ 这一词广泛地出现作为标记。当前标志所包含的速度标尺和承载能力标尺一样。在双胎情况下可分但其承载能力。与过去市场情况相比,新的标准如下: 以前 现在- 205/65 R 15 98 S185 SR 14 185 R 14 90 S185 SR 14 reinforced 185 R 14 94 R185 R 14 C 6 PR 185 R 14 99/97 M185 R 14 C 8 PR 185 R 14 102/100 M乘用车所用的185R的轮胎也适用于轻型商用汽车。101页 轮胎和车轮 图表2.15显示出了确定轮胎的数据1. 尺寸2. 标准轮圈和非标准轮圈3. 轮胎尺寸:宽,外部滚动直径4. 静态旋转半径5. 旋转周长6. 承载能力7. 轮胎在气压2.5bar,车速达到160km/h的承载能力。 2.2.6 轮胎承载能力和膨胀压力所允许的轮轴载荷和最大车速决定最小轮胎气压。可是所要求的气压 远高于汽车达到最佳状态所需要的气压。2.2.6.1 轮胎承载能力的说明在载荷指示中,所示的承载能力是在所有轮胎的速度标准达到“H”时每个轮胎所允许的最大承载能力。有效车速达到210km/h时轮胎的标记为“V”,达到240km/h时标记为“K”“W”或“ZK”,因为车速更高时,其承载能力就会因此而下降。因此,车速达到标准“V”即最大车速240km/h时,轮胎承载能力仅仅是标准时的91%,代号为“W”型的轮胎在速度270km/h时其所示承载能力为正常的85%。鉴于以上两种情况,在车速210km/h到240km/h时承载能力最佳,并且最大速度可通过线性来确定。为达到更高的车速,速度可在240270km/h范围内。在更高车速时,承载能力和轮胎膨胀压力必须由汽车和轮胎生产商决定。可是,这种共识几乎不能影响美国的特殊的轮胎市场,它用另外的标准“P”。2.2.6.2 轮胎气压的指标速度符号为“R”和“V”的轮胎和最小压力与承载能力相符的路用轮胎的有效车速已经可以达到了163km/h。在特殊操纵条件下,车辆或车轮悬挂和所期望的实用价值的设计被车辆制造商视作获得更高气压的原因进一步说,当车速达到210km/h时轮胎的基本气压将以0.3bar的速度直线曾加,并且车速超过210lm/h时轮胎的承载能力就不得不下降。102页 轮胎和车轮图表2.15 65系列的子午线轮胎的尺寸,最新的长、宽、高,以及标准的轮缘和承载能力都是在较高车速时曾加气压的必要性,在2.2.6段中已经说明。轮胎的所有尺寸与轮胎的标准、曾加其承载能力的设计和任何车速下的速度标准及代号为2R的速度值有关。104页 汽车底盘及车身图表2.16 因素Kv, 表示乘用车的子午线轮胎车速在60km/h以上时车速与其滚动半径相关,用白分比表示。可允许的偏Kv应当有所曾加,在德国的WDK Guideline一书的第一页可查到。图表2.17 在美国市场上专门制造的ZR型轮胎用“P”表示,这不满足欧洲市场的标准,因此在那里不被授权,依据的是2.6.1中的条款。如果轮胎的载荷比其最大的承载能力低,那么一个更低的附加轮胎气压将被轮胎制造商们开会商讨。速度标记为“W”轮胎,其气压在表2.13中可使用达190km/h的速度。之后,车速每曾加10km/h至到240km/h,气压每次曾加0.1bar。在更高车速时,轮胎承载能力将必须减少。在汽车上,冷胎气压必须要测试,例如要与周围的温度相适应。如果轮胎气压的设定是在冬季温暖的地区,当汽车在外是轮胎气压将会急剧下降。对于M与S型号的冬季用轮胎,需要有较长的试用期,因为与标准轮胎相比其膨胀气压以0.2bar的速度曾长。更新的特殊型轮胎将不再要求那种调节。2.2.6.3 车轮弧度角的影响车轮弧度角w及大地影响轮胎的性能和效用性。在整个车轮晃动条下弧度角应不能超过4。当弧度角在2时,轮胎的承载能力减少如下: w2至3 95% w3至4 95%105页 轮胎和车轮必须加上有用的中介物质,用途如下:弧度角 220 240 3 320 340 4 压力曾长 2.1% 4.3% 6.6% 9.0% 11.5% 14.1%所有这些对计算结果的影响,例如高速、车轮弧度和轴的载荷,最小轮胎气压能计算出任一轮胎的种类。“WDK99”的指导方针里有这一原则。2.2.6.4 轮胎压力影响其用途我们不得不相信轮胎压力对其用途的影响。这些用途是: Q和T型轮胎 3.2bar H至W和ZR型轮胎 3.5bar M与S型轮胎 3.5bar2.2.7 轮胎侧壁的标记 欧洲所用的所有轮胎被标注的依据是欧洲标准。在美国、日本和澳大利亚,附加的标记要求能说明轮胎的设计和其性能。其性能也必须显示进口的尺寸,这就是为什么欧洲生产的轮胎能看到欧洲的。2.2.8 滚动圆周和驾驶速度 行驶车速: V=0.006(1-Sx,w,a) Sx,w,a 确定的牵引力下滑指数 Cr,dyn 滚动圆周 Nm 发动机转速 Id 轴传动比 Ig 变速器传动比106页 汽车底盘及车身Sx,w,a的内容如下:1档齿轮 0.08 2档齿轮 0.0653档齿轮 0.05 4档齿轮 0.0355档齿轮 0.02图 2.18对被克利伯尔飒制造的轮胎侧面标记的解释说明 :在轮胎的侧面上标号的法律和工业标准主要依据有: FMVSS 和 CIR 104 UTQG(美国)CSA 标准 (加拿大)ADR 23B 标准 (澳洲)ECE-R30标准 (欧洲)1. 制造商 (商标) 产品名字2. 尺寸记号 195=轮胎的公称宽度尺寸宽高比率=60,子午线轮胎制造的轮辋的直径尺寸英寸3. 真空轮胎4. 行业代号5. 制造的国家6. 负荷容量指数 (L1)7. 美国要求最大承载负荷8. 胎面 : 在胎面之下有 6个层重叠人造丝 , 2个层重叠钢丝带 ,2个层重叠尼龙) 轮胎侧面:底部构造有 2个层重叠人造丝9. 美国要求最大的轮胎压力10.11.12. 美国 :符合叙述的美国轮胎标准(UTQG)的作法的制造业者保证 : 10 胎面磨耗:平均寿命与美国特性标准测试值相比较;11. 牵引 : ,B,C=制动在湿的表面方面的性能;12. 温度阻力 :A,B,C=在较高的试验台加速时的温度阻力级别;C是执行美国的标准规定13. E4= 轮胎执行欧盟经济委员会的 ECE R30 用途要求 4=在那些被批准的国家里执行 (4= 荷兰)14. 编号 :根据欧盟经济委员会ECE R-30的标准规定15. 质量认证 =轮胎执行标准依据对外贸易109标准 (质量认证=美国交通部质量认证)16. 制造业者的规范 : CU= 制造厂(大陆的) L2= 轮胎尺寸 AXCT= 模型 127= 制造的日期; 1987年第12周生产107页 轮胎和车轮根据标准DIN75020第5部分,在轮胎中给定的动态圆周长 与速度62公里/小时和操纵压力1.8帕有关。在低速行驶时,它下降到: (2.1c)在目录中也给有有效半径的值。以较高的速度时,由于的增加,从而增大了离心力。动力轮的圆周的线速度超过60千米/小时时,则由速度因数决定。图表2.16详细表明是一个百分率,则以 30 公里/小时的增量增加。其中间值一定被改变,则圆周长为: (2.1d)动态滚动半径将用表示为: 或 , 以超过 60 公里/小时的速度行驶时, (2.2)以175/65 1482 H 轮胎为例子,在速度v=200千米/小时时,(图2.15示)则 则,代入可得 由图2.15所示的滚动周长,根据式(2.1d)可得 而动态半径依据式2.2得 和外径(设计测量值)为 ,则mm当车辆在行驶的时,表示轮胎趋于垂直的范围的值:仅仅比多9毫米或不少于6毫米。在第三章中给出更详细的说明。108页 汽车底盘及车身2.29轮胎度车速表的影响 设计的速度表非常清楚的表明,其测量值绝不亚于真实车速,轮胎影响其发展的进度,主要是以下的因素: -磨耗的程度 -滚动周长的公差 -轮廓设计 -伴随的滑移。 欧共体理事会的75/443标准,自从1991年生效以来,规定一几乎线性的增加值 v , +v0.1*v+4(km/h) (2.2a)从1991年以来的车辆的登记显示值可能依下列各项: 实际的速度 (公里/小时) 30 60 120 180 240最大显示速度值 (公里/小时) 37 70 136 202 268如图2.15所示 ,在 60 公里/h转动圆周速度的公差范围在=+1.5%到 -2.5%,和根据图2.16所示的速度因数可能达到的的偏差=+(-)1.6%。 当讲到动的动轮圆周(方程式2.1 d所示), 当只有考虑负的公差的时候,下列的公差极限 ( 对最接近的数值) 可能采用而且造成被显示的值,而且如果速度表有最大的许可预算值:实际的速度 ( 公里/小时) 60 120 180 240 8车辆与动力工程学院毕业设计说明书第一章 前 言近十年来我国汽车工业迅猛发展,车型越来越多,各种车型的用途与分类也越来越明显。SUV汽车最早起源在美国,其功用是山地越野和军事运用,后来发展为在各种条件下都可使用的车型,并且大受消费者喜爱。目前国内的SUV厂家甚多,但多数是中低档产品,追求的是价廉实用。城市SUV是目我国前发展的主流,可选择两驱和四驱类型,其功率不追求过高,动力也不必太强,所以排量比真正作为越野的SUV车小的多。因此其价格低,但空气污染小,相当实用。柴油动力是今后汽车动力的发展方向,目前很多国外的高端汽车厂家已经在开发柴油高级车,其动力爆发迅速,动力强劲,价格与汽油相比低廉。我国目前的柴油动力主要用在大客和货车上,这些车型的发动机技术含量较低,有少量的SUV也用柴油动力,但其技术含量低,油耗大,噪音大,这些弊端都是以后发展的技术攻关项目。本次设计的就是柴油动力的SUV,设计方向是中档车型,讲究经济实用。本人设计的是后驱动桥和后悬架,在设计过程中参阅了大量文献资料,和专业老师进行探讨,与同学共同克服种种困难,从设计方向出发,目标就是使本车型经久耐用,最终完成了任务。此设计说明书,记述了所有设计相关的数据和信息来源,按照驱动桥和悬架的先后顺序进行了编排,力争使读者能够轻松的读懂。在次要非常感谢我的指导教师李水良及车动学院的各位老师,还有很多同学对我的热情帮助。由于水平所限,书中难免有错误和漏洞之处,恳请各位老师和读者批评指正,在此表示感谢。 第二章 驱动桥的设计2.1 驱动桥概述驱动桥位于传动系统的末端,其基本功用是增大由传动轴传来的转矩,将转矩分配给左、右驱动车轮,并使左、右驱动车轮具有汽车行驶运动学所要求的差速功能;同时,驱动桥还要承受作用于路面和车架或车厢之间的铅垂力、纵向力和横向力。驱动桥主要有主减速器、差速器、驱动车轮的传动装置和驱动桥壳等部件组成。对于各种不同类型的和用途的汽车,正确的确定上述机件的结构型式并成功地将它们组合成一个整体驱动桥,乃是设计者必须首先解决的问题。在汽车总体设计时,从整车性能出发确定了驱动桥的传动比,然而用什么型式的驱动桥,什么结构的主减速器和差速器等在驱动桥设计时是要具体考虑的,绝大多数的发动机在汽车上是纵置的,为使扭矩传给车轮,驱动桥必须改变扭矩的方向,同时根据车辆的具体要求解决左右车轮的扭矩分配,如果是多桥驱动的汽车亦同时要考虑各桥间的扭矩分配问题。整体式驱动桥一方面需要承担汽车的重荷,另一方面车轮上的作用力以及传递扭矩所产生的反作用力矩皆由驱动桥承担,所以驱动桥的零件必须具有足够的刚度和强度,以保证机件可靠的工作。驱动桥还必须满足通过性及平顺性的要求。对驱动桥的基本要求可以归纳为:一、 所选择的主减速比应能满足汽车在给定使用条件下具有最佳的动力性和燃油经济性;二、 差速器在保证左、右驱动车轮能以汽车运动学所要求的差速滚动外并能将转矩平稳而连续不断的传递给左右驱动车轮;三、 当左右驱动车轮与地面的附着系数不同时,应能充分利用汽车的牵引力;四、 能承受和传递路面和车架或车厢间的铅垂力、纵向力和横向力,以及驱动时的反作用力矩和制动时的制动力矩;五 、驱动桥各零部件在保证其刚度、强度、可靠性及寿命的前提下应力求减小簧下质量,以减小不平路面对驱动桥的冲击载荷,从而改善汽车的平顺性;六 、轮廓尺寸不大以便于汽车总体布置并与所要求的驱动桥离地间隙相适应;七 、齿轮与其它传动件工作平稳,无噪声;八 、驱动桥总成及零部件设计应尽量满足零件的标准化、部件的通用化和产品的系列化及汽车变型的要求;九 、在各种载荷及转速工况有高的传动效率;十 、结构简单、维修方便,机件工艺性好,制造容易。由于后桥结构基本已经固定,在后桥设计中需要改进的问题主要有:齿轮传动的噪声、振动;半轴的可靠性设计;后桥壳的应力分析;双曲面齿轮的设计方法等。 2.2 驱动桥型式及选择驱动桥形式与整车有非常密切的关系,驱动桥分两大类:断开式驱动桥和非断开式驱动桥。根据整车的通过性、平顺性以及操纵稳定性对悬架结构提出了要求,如悬架选择了合适的结构型式,而驱动桥的结构也必须与悬架相适应。因此,驱动桥的选型应从汽车的类型、使用条件和生产条件出发,并和其他各部件的结构型式与特性相适应,以保证汽车达到预期性能要求。由于本设计中所设计的车型为SUV,由行驶条件及成本出发,采用非独立悬架及非断开式驱动桥。这种型式驱动桥在汽车,尤其是载重汽车上应用相当广泛。它主要优点是:结构简单、制造工艺性好、成本低、可靠性高、维修调整容易等。本次设计的是0.5吨柴油动力SUV乘用车的后桥,由经济性及低成本等因素考虑:故本次设计采用非断开式驱动桥,单级主减速器,双曲面齿轮传动,普通对称式圆锥行星齿轮差速器,半浮式半轴,整体式桥壳。第三章 主减速器的设计3.1 主减速器结构方案分析主减速器的功用是将输入的转矩增大并相应降低转速,以及当发动机纵置时还具有改变转矩旋转方向的作用。主减速器的结构型式,主要是根据齿轮类型、主动齿轮和从动齿轮的支撑形式以及减速型式的不同而异。驱动桥的主减速器为适应使用要求发展多种结构型式:如单级主减速器、双级主减速器和单级主减速器加轮边减速等。由于两驱SUV发动机的功率不大以及扭矩中等的因素,故采用单级主减速器。在现代汽车的驱动桥上,主减速器齿轮采用得最广泛的是“格里森”(Gleason)制或“奥利康”(Oerlikon)制的螺旋锥齿轮和双曲面齿轮。由于双曲面齿轮的螺旋角较大,则不产生根切得最少齿数可减少,所以可选用较少的齿数,这又利于的传动比传动。同时双曲面齿轮传动平稳噪声小、负荷大、结构紧凑等优点,所以本次设计采用双曲面齿轮传动。3.2 主减速比及计算载荷的确定3.2.1 主减速器比i0的确定主减速比对主减速器的结构型式、轮廓尺寸、质量大小以及当变速器处于最高档位时汽车的动力性和燃油经济性都有直接影响。i0的选择应在汽车总体设计时和传动系的总传动比一起由整车动力计算来确定。i00.377rrnp/vamaxiGh (3-1) 式中 rr: 车轮的滚动半径 rr0.362m np: 最大功率时发动机的转速 np3600r/min vamax: 最高车速 vamax140 Km/h igH: 变速器最高档传动比 igH0.76i00.377rrnp/vamaxigH0.3770.3623600/1400.764.63.2.2齿轮计算载荷的确定1按发动机最大转矩和最低档传动比确定从动齿轮计算转矩TgeTce=TemaxiTlK0T/N (3-2)式中 Temax: 发机最大转矩Temax 225NmN: 驱动桥数目 N=1iTL:由发动机至所计算的主减速器从动齿轮之间的传系最档传动比 iTL18.86T:上述传动部分传动效率 取T0.9K0: 离合器产生冲击载荷时超载系数 K0=1Tce = TemaxiTlK0T/N=2254.14.610.9 /1 =4715 Nm2按驱动轮打滑确定从动齿轮计算转矩 TcsTcs = G2m2rr/lBilB (3-3)式中 G2: 满载时一个驱动轮上的静载荷系数,N G2=23259.852% m2:汽车最大加速度时的后轴负荷转移系数 : 轮胎与路面间的附着系数 取0.85rr: 车轮的滚动半径 rr=0.362mlB ilB : 分别为所计算的主减速器从动齿轮到驱动车轮之间的传动效率和传动比 lB0.98、 ilB1Tcs = G2m2rr/lBilB = 23259.8521.30.850.362/0.981= 4836 Nm3按日常行使平均转矩确定从动锥齿轮计算转矩TGF =rrFJ/lBilB (3-4)式中 FJ:汽车日常牵引力(3000N) 其他数据同上 TGF =rrFJ/NlBilB =30000.362/0.98N=1108N3.3 主减速器齿轮主要参数的计算3.3.1 主、从动齿轮齿数的选择进行主从动锥齿轮齿数Z1、Z2选择时,Z1、Z2应没有公约数,这样可以保证主、从动齿轮之间都能相互啮合,起到自动磨合的作用。为了得到理想的重合系数和高的轮齿抗弯强度,大、小齿轮的齿数和应不小于40。查汽车车桥设计表3-12Z18 Z2i0Z1=373.3.2 从动齿轮大端分度圆直径及端面模数的选择根据从动锥齿轮的计算转矩,按经验公式d2=kd2式中 d2:从动锥齿轮的节圆直径,;kd2:直径系数,取kd2=1316;Tj:计算转矩,Tj=4715Nm所以,d2=kd2 =14 =205圆整取 d2205mm从动锥齿轮大端模数 md2/Z2=5.54 取m63.3.3大齿轮齿面宽的选择汽车主减速器双曲面齿轮的从动齿轮齿面宽F(mm)推荐为: F0.155d231.8mm取F31.8mm3.3.4双曲面齿轮的偏移距E轿车、轻型客车和轻型货车主减速器的E值,不应超过从动齿轮节锥距的40。图31 双曲面齿轮的偏移距和偏移方向3.3.5 螺旋角的选择螺旋角是在节锥表面的展开图上定义的,“格里森”制推荐用下式,近似预选主动齿轮螺旋角的名义值:149式中: 1:主动齿轮名义螺旋角的预选值; z1、z2:主、从动齿轮齿数; d2:从动齿轮节圆直径 mm;E:双曲面齿轮的偏移距 mm。3.3.6 圆弧齿双曲面齿轮的几何尺寸设计1.确定主动小齿轮的轮齿数Z1.Z1=82.确定主动小齿轮的轮齿数Z2Z2=373. 齿数比的倒数=0.2164. 大齿轮的齿面宽F F=0.155d2=31.85. 小齿轮轴线偏移距EE=31.66. 大齿轮分度圆直径d2d2 =2057. 刀盘名义直径rd rd=76.28. 初定小齿轮螺旋角1=499.1角的正切值 tg1=1.1504010. 初选大齿轮的分锥角之余切值ctg2i =1.2(3)=0.2592111. sin2i的正弦值sin2i=0.9681012. 初定大齿轮中点分度圆半径Rm2=81.1072113. 大小螺旋角差值之正弦值sini=0.3512014. cosi 之余弦cosi=0.9363015. 初定小齿轮的扩大系数(14)+(9)(13)=1.3403216.小齿轮中点分度圆半径换算值(3)(12)=18.8151517. 初定小齿轮中点分度圆半径Rm1=(15)(16)=25.2123018. 轮齿收缩系数TR=0.02(1)+1.06=1.3019. 近似计算公法线在大齿轮轴线上的投影(17)=361.2740720. 大齿轮轴线在小齿轮回转平面内偏置角正切tg=0.087535521. 角的余弦=1.0038222.角的正弦sin=0.08720223. 大齿轮轴线在小齿轮回转平面内偏置角=5.0026324. 初算大齿轮回转平面内偏置角正弦值sin2=0.3375625. 2角正切tg2=0.3586126. 初算小齿轮分锥角正切tgr1=0.2443927. r1角余弦cosr1=0.9714128. 第一次校正小齿轮螺旋角的正弦sin2=0.3474929. 2的余弦cos2=0.9376830. 第一次校正后小齿轮螺旋角正弦tg1=1.1587131. 扩大系数修正量(28)(9)-(30)=-0.002887632. 大齿轮扩大系数修正量的换算(3)(31)=-0.0006237333. 校正后大齿轮分偏置的正弦sin1=(24)-(22)(32)=0.3376134. 1角正切tg1=0.3586735. 校正后小齿轮分锥角正切tgr1=0.2431236. r1角值r1=13.6647037. r1角余弦 cosr1=0.9716938. 第二次校正后螺旋角差值的正弦sin1=0.3474539. 1角的值1=22.00556240. 1角的余弦cos1=0.9271341. 第二次校正后螺旋角差值的正切值tg1=1.1808942. 1 角值1=49.7415943. 1角余弦cos1=0.6462444.确定大齿轮螺旋角2=(42)-(39)=27.7327345. 2角余弦cos2=0.8851346. 2角的正切tg2=0.5257247. 大齿轮分锥角余弦ctgr2=2592848. r2的值 r2=75.4738949. r2的正弦sinr2=0.9680550. r2角的余弦cosr2=0.2507551.=25.8909452.=347.3866853. (51)+(52)=373.2776254.大齿轮分锥距在螺旋线上中点切线方向投影=79.6358955. 小齿轮分锥距在螺旋线上中点切线方向投影=68.82156. 极限齿形角正切-tg01=0.1055657. 极限齿形角负值-01=6.02582358. 01角的余弦cos01=0.9944759. =0.004814760. =0.0001595761. (54)(55)=5481.3097962. =0.001974963. (59)+(60)+(62)=0.006949364.94.2785665. 齿线中点曲率半径rd=94.8028266. 比较rd与rd比值0.8037967.(3)(50)=0.054162(左)1.0-(3)=0.784 (右)68.=81.97366(左) (35)(37)=0.23624(右)69.(37)+(40)(67)(左)=0.9718470. 圆心至轴线交叉点的距离Zm=(49)(51)=25.0637271. 大齿轮分锥顶点至轴线交叉点的距离Z=(12)(47)-(70)=-2.4785672. 大齿轮分锥上中点锥距Am=89.9821473. 大齿轮节锥距A0=105.8829674. 大齿轮的分锥上齿宽之半(73)-(72)=15.9008275. 大齿轮在齿面宽中点处的齿工作高hgm=76.77.78. 轮齿两侧压力角的总和i=3879. i角正弦sini=0.6155780. 平均压力角1981. 角的余弦cos=0.9455282. 角的正切tg=0.3443383.=1.430984. 双重收缩齿齿根角的总和D=6.8065685. 大齿轮齿顶高系数K=0.15086. 大齿轮齿根高系数Kb =1.150-(85)=1.0087. 大齿轮齿面宽中点处的齿顶高ham2=(75)(85)=1.1877888. 大齿轮齿面宽中点处的齿根高hfm2=(75)(86)+0.05=7.968589. 大齿轮齿顶角2=(84)(85)=1.02098490. 2角正弦sin2=0.01781991. 大齿轮齿根角2=(84)-(89)=5.7855892. 2角的正弦sin2=0.10080693. 大齿轮大端齿顶高h2/=(87)+(74)(90)=1.4711294. 大齿轮的齿根高h2/=(88)+(74)(92)=9.5585095. 径向间隙C=0.15(75)+0.05=1.2377896. 大齿轮齿全高h=(93)+(94)=11.0296297. 大齿轮齿工作高hg=(96)-(95)=9.7918498. 大齿轮的面锥角02=(48)+(89)=76.4993999. 02角的正弦sin02=0.97237100.02角的余弦cos02=0.23346101. 大齿轮的根锥角R2=(48)-(91)=69.69281102. R2角的正弦inR2=0.93785103. R2角的余弦cosR2=0.34705104. R2角的余切ctgR2=0.37005105. 大齿轮外圆直径d02=205.73777106. 大端分度圆中心到轴线交叉点的距离(70)+(74)(50)=29.05065107. 大齿轮外缘至小齿轮轴线的距离X02=(106)-(93)(49)=27.62653108. =0.44328109.=1.17528110. 大齿轮面锥顶点至小齿轮轴线的距离Z0=(71)-(108)=-2.92184111. 大齿轮根锥顶点至小齿轮轴线的距离ZR=(71)+(109)=-1.30328112.(12)+(70)(104)=96.38204113. 修正后小齿轮轴线在大齿轮回转平面那的偏置角正弦sin=96.38024114. 角的余弦cos=0.94473115. 角的正切tg=0.34704116. 小齿轮顶锥角正弦in01=(103)(114)=0.32787117. 小齿轮的面锥角01=19.26950118. 01角的余弦cos01=0.94398119. 01角的正切tg01=0.34960120.=0.044659121. 小齿轮面锥顶点至大齿轮轴线的距离G0=10.91922122.tg/=0.019364123. /=01.10933cos/=0.99974124./=(39)-(123)左=20.89953cos/=0.93421125.1=(117)-(36)=5.6048 cos1=0.99522126.(113)(67)右-(68)右=0.020802-(113)(67)右-(68)右=-0.45466127.=1.07014128.(68)左+(87)(68)右=92.25426 129.=0.94851130.(74)(127)=17.01523131. 小齿轮外缘至大齿轮轴线的距离BR=(128)+(130)(129)+(75)(126)左=98.22868132.(4)(127)-(130)=17.015222133. 小齿轮轮齿前缘至大齿轮轴线的距离B1=(128)+(132)(129)+(75)(126)右=62.51491134.(121)+(131)=109.14790135. 小齿轮的外缘直径d01=76.31622136.=93.12485137. 在大齿轮回转平面内偏置角正弦sin0=0.3393138. 在大齿轮回转平面内偏置角0=19.84904139. 0角的余弦cos0=0.94059140.=-6.86768141. 小齿轮根锥顶点至大齿轮轴线的距离GR=18.71311142.sinrR1=(100)(139)=0.21959143. 小齿轮根锥角rR1=12.68486144. rR1角的余弦cosrR1=0.97560145. rR1角的正切tgrR1=0.1851580.22508146. 最小齿侧间隙Bmin=0.102147. 最大齿侧间隙Bmax=0.152148.(90)+(92)=0.11863149.(96)-(4)(148)=7.25719150. 在节平面内大齿轮内锥距Ai=(73)-(4)=74.05296双曲面齿轮副的理论安装距与另外几个尺寸参数的关系如下图:图32 双曲面齿轮副的安装尺寸3.4 主减速器齿轮强度计算3.4.1 单位齿上的圆周力按发动机最大扭矩计算时: p=Temaxig103/F (3-5)式中:p:单位齿长上的圆周力 N/mm ;Temax:发动机最大扭矩 N/m;ig:变速器档传动比;d1:主动齿轮节圆直径 mm;F:动齿轮的齿面宽 mm 。P=Temaxig103/F =1318.6 N/mmP=1429 N/mm3.4.2齿轮的弯曲强度计算 w=2103TjK0KsKm/KvFzm2J (3-6)式中:Tj:齿轮的计算转矩 Nm; K0:超载系数,取 K01; Ks:尺寸系数,反映材料性质的不均匀性,与齿轮尺寸及热处理等有关。当端面模数m1.6mm时,Ks; 式中: Km: 载荷分配系数,取Km1Kv:质量系数,对于汽车驱动桥齿轮,当齿轮接触良好、周节及径向跳动精度高时,可取Kv1;Z: 计算齿轮的齿数;m: 端面模数 mm;J:计算弯曲应力用的综合系数。 w=2103TjK0KsKm/KvFzm2J =615.9 MPa汽车主减速器齿轮的弯曲应力应不大于700 MPa , 满足要求。3.4.3 齿轮的接触强度计算j (3-7)式中 T1j : 主动齿轮计算转矩 Nm;Cp :材料的弹性系数,对于钢制齿轮副取232.6/mm; d1 : 主动齿轮的节圆直径 mm; K0、 Kv 、Km :见上式说明; Ks:尺寸系数,可取 Ks1; Kf : 表面质量系数,对于制造精密的齿轮可取 Kf1; F : 齿面宽 mm,取齿轮副中较小的; J:计算弯曲应力用的综合系j2015 Mpa 主从动齿轮的接触应力是相同的,许用接触应力为2800 Mpa。满足条件要求。3.5 主减速器齿轮的材料及热处理驱动桥锥齿轮的工作条件是相当恶劣的,与传动系其他齿轮相比,具有载荷大、作用时间长、变化多、有冲击等特点,是传动系的薄弱环节。其损坏形式主要有:齿根弯曲折断、齿面疲劳点蚀、磨损和擦伤等。据此对驱动桥齿轮的材料及热处理应有一下要求:1). 有高的弯曲疲劳强度和表面接触疲劳强度及较好的齿面耐磨性;2). 轮芯部应有适当的韧性以适应冲击载荷,避免轮齿根部折断;3). 钢材的锻造、切削与热处理等加工性能好,热处理变形小,以提高产品质量,减少成本并降低废品; 本次设计主减速器主、动齿轮材料选用20CrMnTi 。齿轮渗碳1.21.5、齿面淬火使其硬度达到5864。第四章 差速器的设计 4.1 差速器机构方案分析汽车在行驶过程中左右车轮在同一时间内所滚过的行程往往是有差别。例如,转弯时外侧车轮的行程总要比内侧的长。另外,即使汽车作直线行驶,也会由于左右车轮在同一时间内所滚过的路面垂向波形的不同,或由于左右车轮轮胎气压、轮胎负荷、胎面磨损程度的不同以及制造误差等因素引起左右车轮外径不同或滚动半径不相等而要求车轮行程不等。在左右车轮行程不等的情况下,如果采用一根整体的驱动车轮轴将动力传递给左右车轮,则会由于左右驱动车轮的转速虽相等而行程却又不相等的这一运动学上的矛盾,引起某一驱动车轮产生滑转或滑移。此外,由于车轮与路面间尤其在转弯时有大的滑转或滑移,易使汽车在转向时失去抗侧滑的能力而使稳定性变坏。为了消除由于左右车轮在运动学上的不协调而产生的这些弊病,汽车左右驱动轮间都装有差速器。差速器保证了汽车驱动桥两侧车轮在行程不等时具有以不同速度旋转的特性,从而满足汽车行驶运动学的要求。差速器的结构型式有多种,其主要的结构型式有:对称式圆锥行星齿轮差数器、防滑差速器,防滑差速器又可分为自锁式和强制锁止式。对于柴油SUV来说,由于路面状况一般,各驱动车轮与路面的附着系数变化小,因此采用结构简单、工作平稳、制造方便、造价又低的对称式圆锥行星齿轮差数器。图41 普通圆锥齿轮差速器的 工作原理简图4.2 差速器齿轮参数的计算行星齿轮数目的选择:轿车常用2个行星齿轮,载货汽车和越野汽车多用4个行星齿轮,少数汽车采用3个。本次设计采用4个行星齿轮。1. 球面半径/由经验公式 /= 其中-行星齿轮的球面半径系数,=2.5-3.0,取=2.5-差速器计算转矩取Tcs 和Tce两者中较小值 =4715所以 /=422. 锥齿轮的节锥距A0A0=(0.98-0.99)=40 mm3. 行星齿轮齿数Z1和半轴齿数齿数Z2取Z1=12 Z2=24查机械设计实用手册 表8-3查机械设计实用手册 图8-34. 节锥角5. 锥齿轮大端端面模数meme=圆整后取me=36. 压力角取压力角=22.57. 节圆直径de de1= me=36mm de2= me=70mm8. 轴交角909. 周节 t3.1416m9.4210. 齿面宽F= 10 11. 齿工作高 hg hg1.6m4.8mm12. 齿全高h h1.788m+0.0515.415 mm 13. 齿顶高 hh20.430+m =3.23 mmh1=hg- h2=1.57 mm14. 齿根高hh1=1.788m- h1=2.13 mm h2=1.788m- h1=3.79 mm15 .径向间隙 c chhg0.61516. 齿根角1 arctan=3.052=arctan5.4117. 面锥角0011231.98022 66.6918. 根锥角RR1=1-1=23.52 R2=2-2=58.0219. 外圆直径d0d01=d1+2 h1cos1=41.78 mm d02=d2+2 h2cos2=73.39 mm20. 节锥顶点至齿轮外缘距离0 01- h1sin1=34.26mm 01- h2sin2=16.59mm21. 理论弧齿厚ss1=t-s2=3.96mms2=-( h1- h2)tan-m=5.46mm22. 齿测间隙 B B=0.13mm23. 弦齿厚 SXSX1=S16.51mmSX2=S25.43mm 24. 弦齿高 =+=4.10mm 2.59mm 4.3 差速器齿轮强度计算差速器齿轮主要进行弯曲强度计算,而对疲劳寿命则不予考虑,这是由于行星齿轮在差速器的工在作中经常只起等臂推力杆的作用,仅在左右驱动轮有转速差时行星齿轮和半轴齿轮之间才有相对滚动的缘故。 汽车差速器齿轮的弯曲应力为:w=2103TK0KsKm/KvFz2m2J (4-1)式中 T :差速器一个行星齿轮给予一个半轴的转矩 Nm; T572.9Nm;Tj : 计算转矩;n : 差速器行星齿轮数目;Z2 : 半轴齿轮齿数; K0: 超载系数,取 K01; Ks: 尺寸系数,反映材料性质的不均匀性,与齿轮尺寸及热处理等有关。当端面模数m1.6mm时,Ks0.61; Km: 载荷分配系数,取Km1Kv:质量系数,对于汽车驱动桥齿轮,当齿轮接触良好、周节及径向跳动精度高时,可取Kv1;F :齿面宽 mmm :端面模数 J :计算汽车差速器齿轮弯曲应力用的综合 系数。w2103TK0KsKm/KvFz2m2J707.3MPa 差速器齿轮弯曲应力应不大于980MPa,满足要求。第五章 半轴及桥壳设计5.1 半轴的设计计算驱动车轮的传动装置位于汽车传动系的末端,其功用是将转矩由差速器半轴齿轮传给驱动车轮。在一般非断开式驱动桥上,驱动车轮的传动装置就是半轴,这时半轴将差速器半轴齿轮与轮箍连接起来。普通非断开式驱动桥的半轴,根据其外端的支承型式或受力状况的不同,分为:半浮式、3/4浮式和全浮式三种型式。半轴的首要任务是传递扭矩,但由于轮毂的安装结构的不同,非全浮式半轴除受扭矩外,还要受到车轮上的垂向力、侧向力以及牵引力或制动力所形成的纵向力。由于本次设计的SUV车属于中档装备配制一般,对舒适性要求不高,后桥所受载荷较大,因此采用半浮式半轴。半轴的主要尺寸是它的直径,设计与计算时首先应合理的确定其载荷。半轴的计算应考虑以下三种可能的载荷公况:(1)半轴同时受垂直力Z、纵向力X所引起的弯矩Xr。对左右半轴来说,垂直力Z,Z为: Z= Z=Zg=g=N=6535.5N-满载静止汽车的驱动桥对水面的载荷,N;m-汽车加速和减速时的质量转移系数,取m=1.2 g-侧车轮(包括轮毂、制动器等)本身对水平地面的载荷,;对于驱动车轮来说,当按发动机最大转矩及传动系最低档传动比计算所得的纵向力小 Z,Zi=0.62254.14.60.9/0.362=6345.5N-差速器转矩分配系数,取=0.6-发动机最大转矩N.mi-传动系最低档传动比;-汽车传动系效率,取=0.9-车轮滚动半径,m 。左右半轴所承受的合成弯矩M(Nm)M=b=b=1184.2T=Xr=6345.5N0.362m=2297Nm10Mpa=438.5 Nm=10Mpa=425.4 Nm合成应力:=10.94Mpa(2)半浮式半轴在第二种工况下半轴只受弯矩。在侧向力Y作用下,左、右车轮承受的垂直力Z、Z和侧向力Z、Z各不相等,而半轴所受的力为Z=Zg=gZ=Zg=gY=Y=式中的“+”、“”号的取舍是这样的:当侧向力向右作用时,取上面的符号,向左作用时,取下面的符号。B-驱动车轮的轮距,mm ;h-汽车质心高,mm;-车轮与路面的侧向附着力系数,取=1.0左右半轴受的弯矩为:rbrb式中的“+”、“”号的取舍同上。G=23259.80.52=11848N b=0.13mm h=680mm =0.362mm B=1470mm 代入数据得:Y=21932.5N Z=552.5N Y=852.5N Z=21632.5N弯矩为:M=2684.6N M=142.2N所受应力分别为:=Mpa =994.3Mpa=Mpa52.7Mpa (3)半浮式半轴在第三种工况下半轴只承受弯矩: Mv=k式中k-动载荷系数,取k=1.75代入数据得Mv=1.75(-300)0.13Mpa =1227.6Mpa则 =Mpa =454.7MPa故半轴的设计符合要求。(4)半轴的结构设计及材料与热处理为了使半轴的花键内径不小于其杆部直径,常常将加工花键的端部做的粗些,并适当地减小花键槽的深度,因此花键的齿数必须相应的增加,通常取10齿至18齿。半轴的破坏形式多为扭转疲劳破坏,因此在结构设计上应尽量增大各过度圆部分的圆角半径以减小应力集中。半轴多采用含铬的中碳合金钢制造,如40Cr,40CrMnMo,40CrMnSi,35CrMnSi35CrMnTi等。本次设计采用的材料是40Cr。半轴的热处理都采用调质处理的方法,调质后要求杆部硬度为HB388-444(突缘部分可降至HB248)。由于硬化层本身的强度较高,加之在半轴表面形成大残余压应力,以及采用喷丸处理,滚压半轴突缘根部过度圆角等工艺,使半轴的静强度和疲劳强度大为提高,尤其是疲劳强度提高的十分显著。5.2 桥壳的设计驱动桥桥壳是汽车上的主要零件之一,非断开式驱动桥的桥壳起着支承汽车载荷的作用,并将载荷传递给车轮。作用在驱动车轮上的牵引力、制动力、侧向力、和铅垂力也是经过桥壳传到悬架或车厢上。因此桥壳既是承载件又是传动件,同时它又是主减速器、差速器及驱动车轮传动装置的外壳。驱动桥桥壳既是承载件又是传动件,因此桥壳需要有足够的强度和刚度。为了减小汽车的簧下质量以利于降低动载荷、提高汽车的行驶平顺性,在保证强度和刚度的前提下应力求减小桥壳的质量。桥壳还应结构简单、制造方便以利于降低成本。其结构还应保证主减速器的拆装、调整、维修和保养方便。桥壳大体可分三种型式:可分式、整体式、组合式。 一、 可分式桥壳可分式桥壳由两部分组成,每部分均有一个铸件壳体和一个压入其内部的轴管,轴管与壳体用铆钉连接。可分式桥壳制造工艺简单,主见速器轴承的支撑刚性好。但拆装,调整,维修很不方便,轴壳的刚度和强度受到结构的限制,现已很少采用,应用的也多在中小型汽车上。二、 整体式桥壳整体式桥壳的刚度和强度都比较大。桥壳制成整体式结构后,主减速器和差速器装配总成再用螺栓安装到桥壳上,这种结构对主减速器的拆装,调整都比较方便。按照制造工艺的方法,整体式桥壳又可分为铸造式,冲压焊接式和扩张成形式三种。1. 铸造式桥壳这种结构的桥壳强度和刚度较大,钢板弹簧座与桥壳壳体铸成一体,桥壳可根据强度要求铸成适当的形状。与冲压桥壳相比,主要缺点是重量大,加工面多,制造工艺复杂等。2. 冲压焊接式桥壳钢板冲压焊接成型的整体式桥壳具有重量轻,工艺简单,材料利用率高等优点,并适合大量的生产,因此在中小吨位货车和矫车上被广泛采用。由于目前冲压设备有了长足发展,这种桥壳的优点更为突出,有许多重型车的桥壳也已采用了这种结构。3. 扩张成形式桥壳这种桥壳无论是刚度和强度都比较大,其重量也轻材料还省。但制造这种桥壳需要专用的扩张设备,而这种设备目前国内很少,所以成本太高而不能被广泛使用。三、 组合式桥壳组合式桥壳是主减速器壳与部分桥壳铸成一体,而后用无缝钢管压入壳体两端,两者间用塞焊方法焊接在一起。它具有较好的从动齿轮轴承的支撑刚度,主减速器的装配调整也较分开式桥壳方便。然而这种桥壳要求有较高的加工精度,它的维修,装配,调整,与整体式桥壳相比仍较复杂。桥壳刚度与整体式相比也较差,常见于轿车,轻型货车的驱动桥壳。本次设计的柴油SUV,由于追求的是实用性,因此采用整体式桥壳。第六章 后悬架悬架是现代汽车上的重要总成之一,它把车架与车轴弹性地连接起来。其主要任务是传递作用在车轮和车架之间的一切力和力矩;缓和路面传给车架的冲击载荷,衰减由此引起的承载系统的振动,保证汽车行使的平顺性;保证车轮在路面不平和载荷变化时有理想的运动性,保证汽车操纵的稳定性,使汽车获得高速行使能力。 悬架是有弹性元件、导向装置、减振器、缓冲块和横向稳定器等组成。悬架分为独立悬架和非独立悬架。非独立悬架的特点是,左右车轮用一根整体轴连接,再经过悬架与车架连接;独立悬架的结构特点是,左右车轮通过各自的悬架与车架连接。依据本次设计车型,后悬架采用纵置钢板弹簧为弹性元件兼导向机构的非独立悬架,其主要优点是:结构简单,制造容易,维修方便,工作可靠。缺点就是平顺性较差,在不平路面上行驶时左右车轮相互影响等。由于前悬架采用的是双横臂式独立悬架,与后钢板弹簧悬架相匹配时能够通过将上横臂只撑承销轴线在纵向垂直平面上的投影设计成前高后底,使悬架的纵向运动瞬心位于有利于减少制动前俯角处,使制动时车身纵倾减少,保持车身有良好的稳定性。6.1 钢板弹簧的设计钢板弹簧是汽车悬架中应用最广泛的一种弹性元件。它是有若干片等宽但不等长的合金弹簧片组合而成的一根近似等强度的弹性梁。钢板弹簧本身还能起导向机构的作用,并且由于各片之间的摩擦起一定减振作用。1.钢板弹簧长度LL=(0.40.55)轴距取=0.42760mm=1104mm2.满载弧高f=1020mm3.钢板弹簧的总惯性矩:=(L-ks)c/(48E) (6-1)式中:s-U型螺栓中心距取90mmk-挠性夹紧,取0-挠度增大系数(重叠片数n=2,总片数n=4)=0.5 =1.5/1.04(1+0.5)=1.15C-钢板弹簧垂直刚度(N/mm) C=12090/90=134 E-为材料的弹性模量(MPa) 取20.6 MPa 4.总截面系数WW (L)/4()-弯曲应力 取400 MpaW(232
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:0002-柴油SUV后驱动桥与后悬架的设计【CAD图纸+文档】
链接地址:https://www.renrendoc.com/paper/98918145.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!