探讨线性规划整数最优解的调整_第1页
探讨线性规划整数最优解的调整_第2页
探讨线性规划整数最优解的调整_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、探讨线性规划整数最优解的调整对于高中的二元一次不等式(组)与平面区域这个知识点是不难的,不过对于解题的规范性学生还是要加强的。在这里就和大家探讨必修五课本当中的一道关于线性规划要求整数解的问题。例1:某工厂用A,B两种配件生产甲,乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可以从配件厂获得16个A配件和12个B配件,按每天工作8h计算,该厂所有可能的日生产安排是什么?若生产一件甲产品获利2万元,生产一件乙产品获利3万元,问哪种生产安排利润最大?分析:这是一道典型的线性规划的问题,首先可以设甲,乙两种产品分别为x,y件,从而列出约束条件

2、。在这道题目中,所设的是产品个数的问题,那就要注意x,yN+。解:设甲,乙两种产品分别为x,y件,由题意可得:M(4,2)则图形中的阴影部分的所有整数点就是该厂所有的日生产安排。接着还要求解第二问,这就涉及到了目标函数,设利润为Z,则Z=2x+3y。当目标函数刚好与可行域交于点M(4,2)时,能使获得的利润最大,Zmax=14(万元)此题中的点M是刚好为整数点,而假设M不是为整数点时,那又应该如何寻找其最优解?接下来再以必修五课本的一道为例题.评析:对于此道类型的题目求出来的最优解恰好能符合条件,难度没那么大,但是有些题目对于最优解还要再进一步进行讨论。例2:要将两种大小不同的钢板截成A,B,

3、C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:规格类型钢板类型A规格B规格C规格第一种钢板211第二种钢板123问题1:今需要A,B,C三种规格的成品分别15,18,27,用数学关系式和图形表示上述要求。问题2:各截这两种干板多少张可得所需A,B,C三种规格成品,且使所用钢板张数最少?分析:这种也是典型的线性规划的题目,问题1难度就是读懂题目,然后根据题意列出约束条件;而对于问题2即是求最优解,而此题的最优解也是要取整数,而这个整数最优解相对上一题就较难点。解:设需截第一种钢板x张,第二种钢板y张,则则图形中的阴影部分的所有整数点就是可截的方法。接着还要求解问题2+0,这就涉

4、及到了目标函数,设钢板数为Z,则Z=x+y当目标函数刚好与可行域交于点M(,)时,能使钢板数最少,这就涉及到一个问题就是点M不是整数点,这说明点M不是最优解,那就要对最优解进行调整。课本所介绍的方法就是需找点M附近的整数点,在这里介绍另外一种最优解的调整方法。将点M(,)带入目标函数Z=,Z不是整数,取Z的就近整数值为12,令12=x+y,则y=12-x代入上面的约束条件得:解得,则x能取3,4,5,6,代入x+y=12中再进行检验,当x=3时y=9和x=4时y=8这两种解都符合条件,所以要截得所需三种规格的钢板,且使所截两种钢板数最小的方法有两种,第一种截法是第一种钢板3张,第二种钢板9张;第二种截法是第一种钢板4张,第二种钢板8张,两种截法都最少要用两种钢板12张。评析:这就是对于最优解调整的一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论