理学类分子生物物理学.ppt_第1页
理学类分子生物物理学.ppt_第2页
理学类分子生物物理学.ppt_第3页
理学类分子生物物理学.ppt_第4页
理学类分子生物物理学.ppt_第5页
已阅读5页,还剩76页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Molecular Biophysics,分子生物物理学,分子水平,研究生物体系物理学性质、行为,Biopolymers: Nucleic acid (DNA, RNA) Protein,Molecules in Biosystem,Saccharide Lipid,Other,PROTEIN STRUCTURE,1965年中国在世界上首次用化学方法 人工合成的蛋白质牛胰岛素,Secondary Structure,Primary Structure,Tertiary Structure,supersecondary Structure or motif,domain,Quaternary S

2、tructure,Hierarchy of Protein Structure by Linderstrm-Lang,Chiral,L alanine,COOH,CH3,NH2,H,Property of amino acid,zwitterion,Uncharged structure Minor component,Dipolar ion, or zwitterion Major component,Classificatory of amino acid based sidechains (R groups),?,Histidine,Protein Primary Structure,P

3、eptide bond,Backbone,Side chain,Amine/N terminus,Carboxyl/C terminus,Pauling i-(i+4) interactions between i and i+4 stabilize helix,Distortions of a-helices,The majority of a-helices in globular proteins are curved or distorted somewhat compared with the standard Pauling-Corey model. Why? The packin

4、g of buried helices against other secondary structure elements in the core of the protein Proline residues induce distortions of around 20 degrees in the direction of the helix axis,3. Solvent. Exposed helices are often bent away from the solvent region. This is because the exposed C=O groups tend t

5、o point towards solvent to maximise their H-bonding capacity, i.e. tend to form H-bonds to solvent as well as N-H groups.,310 helix introduction,Only 3.4% of the residues are involved in 310 helices, and nearly all those in helical segments containing i-i+3 hydrogen bonds.,Ideal (-74.0, -4.0) / foun

6、d (-71.0 and -18.0),CO-HN hydrogen bond: i-i+3,Standard 310 helix,Proline helix,Left handed helix 3.0 residues per turn pitch = 9.4 No hydrogen bonding in the backbone but helix still forms. Poly-glycine also forms this type of helix Collagen: high in Gly-Pro residues has this type of helical struct

7、ure,p-helices introduction,The pi helix is an extremely rare secondary structural element in proteins. the backbone C=O of residue i hydrogen bonds to the backbone HN of residue i+5.,i- - i + 5 H-bonds 2.8angstrom,the phi and psi angles of the pure pi helix ( -57.1, -69.7) lie at the very edge of an

8、 allowed, minimum energy region of the Ramachandran (phi, psi) map. the pi helix requires that the angle tau (N-Ca-C) be larger (114.9) than the standard tetrahedral angle of 109.5 degrees. the large radius of the pi helix means the polypeptide backbone is no longer in van der Waals contact across t

9、he helical axis forming an axial hole too small for solvent water to fill. side chains are more staggered than the ideal 3.10 helix but not as well as the alpha helix.,H-bond: 1-5,alpha-helix, surface of protein, barrier amphiphilic protein design projects by Degrado, USA,Helical wheel tools,Helix d

10、ipole,The partial charges on the amide hydrogen and carbonyl oxygen are shown in units of the elementary charge contributing to an overall dipole moment of 3.46 Debye units.,helix macrodipole,Sheet,20-28% (Kabsch Creighton, 1993),a repeating secondary structure,Parameters of secondary structure,n is

11、 the number of residues per helical turn r is the helical rise per residue (nm) p is the helical pitch (nm).,-139 and +135,Parallel sheet,Antiparallel sheet,Twists,about 30 degrees per residue in right-handed sense Left-handed: crossover angel Right-handed: progressive H-bond twist,Parallel sheets a

12、re less twisted than anti-parallel and are always buried.,Bulges,Beta-hairpin Crossover connection: right-handed left-handed,One residue backbone, two H-bonds,Strand connections,Turn,that serve to reverse the direction of the polypeptide chain Surface of the protein Antibody recognition, phosphoryla

13、tion, glycosylation, hydroxylation,Gamma-turn,H-bond: i-i+2 (70, -60) and (-70, 60) for i+1 residue,Type I and I turn,H-bond: i-i+3 (-60, -30) and (-90, 0) for i+1, i+2 residues,The backbone dihedral angles of residue are (-60, 120) and (80, 0) of residues i+1 and i+2, respectively of the type II tu

14、rn.,2.3.3. Type II and II turn,the hydrogen bond between CO of residue i and NH of residue i+3. This is a single turn of right-handed (III) and left-handed (III) 3.10 helix, respectively. The backbone dihedral angles of residue are (-60, -30) and (-60, -30) of residues i+1 and i+2, respectively of t

15、he classical type III turn.,2.3.4. Other structures,1. Loop random coil 2. Paperclips cap of a-helix,Identification of secondary structure,Identification without 3D structure,CD,可信度: a-helix, 97%; sheet 75%; 50% turn, 89% other From Manavalan b.-; c.-loop-; d. Rossmann折叠; E,f,g. 回形拓扑结构,细胞色素C,-loop-,

16、细胞核抗原的-结构,-,纤溶酶原的-loop-结构,结构域domain,多肽链在超二级结构的基础上进一步折叠成紧密的近乎于球状的结构,这种结构称为结构域domain,结构域的特点,(1)结构域是球状蛋白质的独立折叠单位。对一些较小的球状蛋白质分子或亚基来说,结构域和三级结构是一个意思。 例如红氧还蛋白,核糖核酸酶、肌红蛋白等。,(2)对于较大的球状蛋白质或亚基,其三级结构往往由两个或多个结构域缔合而成也即它们是多结构域的,例如免疫球蛋白的轻链含2个结构域。,结构域有时也指功能域。功能域可以是一个结构域,也可以是由两个结构域或两个以上结构域组成,从功能角度看许多多结构域的酶,其活性中心都位于结构域之间,因为通过结构域容易构建具有特定三维排布的活性中心。结构域之间常常只有一段柔性的肽链连接,形成所谓铰链区,使结构域容易发生相对运动,这是结构域的一大特点。结构域之间的这种柔性将有利于活性中心结合底物和施加应力。,Protein Tertiary Structure,三级结构指一个不可分的单元(分子)的完整的三维空间结构。对于蛋白质,此单元通常是共价连接的一个分子。,目前已经测出三级结构的生物大分子都储存在蛋白质数据库中(Protein data bank,PDB),借助软件可查阅显示其空间结构,还可以在不同方向旋转以获得空间结构的细节。,嗜热菌蛋白

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论